The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199183 Decimal expansion of greatest x satisfying x^2+3*x*cos(x)=1. 4
 3, 2, 7, 7, 4, 6, 4, 6, 6, 3, 4, 1, 3, 7, 3, 0, 5, 8, 7, 3, 4, 5, 8, 7, 7, 2, 7, 7, 9, 1, 0, 8, 3, 5, 7, 1, 7, 7, 4, 7, 8, 5, 8, 8, 5, 4, 4, 7, 9, 5, 3, 1, 4, 9, 0, 1, 3, 4, 2, 1, 2, 3, 2, 8, 6, 6, 2, 2, 6, 8, 2, 3, 3, 2, 8, 8, 5, 6, 8, 8, 0, 4, 7, 6, 8, 9, 7, 7, 7, 9, 5, 5, 9, 1, 3, 5, 7, 0, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A199170 for a guide to related sequences.  The Mathematica program includes a graph. LINKS EXAMPLE least: -1.3606727725137972152286027487379925... greatest: 3.27746466341373058734587727791083... MATHEMATICA a = 1; b = 3; c = 1; f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110] RealDigits[r]   (* A199182  least of four roots *) r = x /. FindRoot[f[x] == g[x], {x, 3.27, 3.28}, WorkingPrecision -> 110] RealDigits[r]  (* A199183   greatest of four roots *) CROSSREFS Cf. A199170. Sequence in context: A005213 A075701 A016603 * A178908 A198552 A120633 Adjacent sequences:  A199180 A199181 A199182 * A199184 A199185 A199186 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 07:19 EST 2020. Contains 332199 sequences. (Running on oeis4.)