login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199183
Decimal expansion of greatest x satisfying x^2 + 3*x*cos(x) = 1.
4
3, 2, 7, 7, 4, 6, 4, 6, 6, 3, 4, 1, 3, 7, 3, 0, 5, 8, 7, 3, 4, 5, 8, 7, 7, 2, 7, 7, 9, 1, 0, 8, 3, 5, 7, 1, 7, 7, 4, 7, 8, 5, 8, 8, 5, 4, 4, 7, 9, 5, 3, 1, 4, 9, 0, 1, 3, 4, 2, 1, 2, 3, 2, 8, 6, 6, 2, 2, 6, 8, 2, 3, 3, 2, 8, 8, 5, 6, 8, 8, 0, 4, 7, 6, 8, 9, 7, 7, 7, 9, 5, 6, 8, 9, 7, 5, 7, 0, 0
OFFSET
1,1
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: -1.3606727725137972152286027487379925...
greatest: 3.27746466341373058734587727791083...
MATHEMATICA
a = 1; b = 3; c = 1;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110]
RealDigits[r] (* A199182 least of four roots *)
r = x /. FindRoot[f[x] == g[x], {x, 3.27, 3.28}, WorkingPrecision -> 110]
RealDigits[r] (* A199183 greatest of four roots *)
CROSSREFS
Sequence in context: A005213 A075701 A016603 * A178908 A198552 A120633
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 04 2011
EXTENSIONS
a(92) onwards corrected by Georg Fischer, Aug 03 2021
STATUS
approved