login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199186 Decimal expansion of x<0 satisfying x^2+3*x*cos(x)=3. 4
1, 6, 3, 6, 4, 4, 3, 5, 5, 1, 9, 5, 5, 0, 4, 1, 4, 2, 2, 0, 6, 7, 5, 9, 3, 0, 3, 1, 1, 8, 7, 1, 2, 8, 2, 4, 5, 5, 9, 3, 6, 5, 4, 1, 7, 1, 8, 5, 9, 0, 2, 6, 8, 4, 2, 5, 3, 3, 4, 8, 5, 5, 7, 2, 4, 9, 6, 0, 1, 4, 7, 7, 1, 1, 7, 8, 8, 6, 4, 9, 0, 3, 3, 9, 7, 9, 7, 6, 2, 3, 7, 9, 1, 6, 2, 1, 2, 7, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A199170 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

negative: -1.6364435519550414220675930311871282455...

positive:  3.56968633396230393049792896687800143343...

MATHEMATICA

a = 1; b = 3; c = 3;

f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c

Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]

Plot[{f[x], g[x]}, {x, 0, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -1.7, -1.6}, WorkingPrecision -> 110]

RealDigits[r]  (* A199186 *)

r = x /. FindRoot[f[x] == g[x], {x, 3.56, 3.57}, WorkingPrecision -> 110]

RealDigits[r]  (*  A199187 *)

CROSSREFS

Cf. A199170.

Sequence in context: A165065 A069938 A043296 * A176715 A229522 A227400

Adjacent sequences:  A199183 A199184 A199185 * A199187 A199188 A199189

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 07:19 EST 2020. Contains 332199 sequences. (Running on oeis4.)