login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199185 Decimal expansion of greatest x satisfying x^2+3*x*cos(x)=2. 4
3, 4, 4, 4, 2, 8, 4, 6, 0, 9, 9, 0, 4, 9, 5, 5, 4, 1, 0, 7, 9, 1, 9, 5, 5, 5, 2, 7, 8, 5, 3, 8, 1, 2, 5, 1, 9, 5, 6, 9, 2, 4, 4, 7, 6, 3, 4, 8, 1, 1, 3, 7, 2, 2, 0, 4, 9, 8, 8, 0, 7, 0, 1, 6, 7, 1, 8, 7, 9, 4, 8, 9, 4, 7, 8, 9, 7, 2, 9, 4, 4, 5, 4, 9, 0, 6, 7, 2, 1, 2, 5, 6, 2, 3, 9, 6, 1, 9, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A199170 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least: -1.5093390624666881234512526417921902931351...

greatest: 3.44428460990495541079195552785381251956...

MATHEMATICA

a = 1; b = 3; c = 2;

f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c

Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -1.6, -1.5}, WorkingPrecision -> 110]

RealDigits[r]  (* A199184  least of four roots *)

r = x /. FindRoot[f[x] == g[x], {x, 3.44, 3.45}, WorkingPrecision -> 110]

RealDigits[r]  (* A199185   greatest of four roots *)

CROSSREFS

Cf. A199170.

Sequence in context: A000916 A323846 A014241 * A279781 A262827 A143490

Adjacent sequences:  A199182 A199183 A199184 * A199186 A199187 A199188

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 07:19 EST 2020. Contains 332199 sequences. (Running on oeis4.)