

A198370


Decimal expansion of greatest x having 4*x^2+4x=cos(x).


3



2, 0, 3, 4, 5, 1, 3, 2, 5, 5, 3, 1, 9, 2, 5, 0, 4, 1, 5, 5, 5, 1, 1, 6, 8, 0, 5, 0, 6, 0, 6, 1, 1, 9, 9, 5, 6, 1, 1, 6, 1, 8, 6, 7, 7, 8, 9, 0, 3, 4, 4, 6, 3, 3, 3, 3, 1, 5, 2, 7, 0, 3, 1, 3, 9, 3, 5, 5, 9, 1, 7, 6, 0, 6, 0, 1, 6, 8, 6, 0, 1, 3, 4, 9, 1, 7, 1, 6, 3, 2, 3, 1, 6, 6, 3, 3, 7, 7, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

See A197737 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=0..98.


EXAMPLE

least x: 1.1023847462794395958058183658678813...
greatest x: 0.203451325531925041555116805060611...


MATHEMATICA

a = 4; b = 4; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, 2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.1}, WorkingPrecision > 110]
RealDigits[r1] (* A198369 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .20, .21}, WorkingPrecision > 110]
RealDigits[r2] (* A198370 *)


CROSSREFS

Cf. A197737.
Sequence in context: A290820 A278029 A066246 * A173517 A109921 A139637
Adjacent sequences: A198367 A198368 A198369 * A198371 A198372 A198373


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 24 2011


STATUS

approved



