login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198370 Decimal expansion of greatest x having 4*x^2+4x=cos(x). 3
2, 0, 3, 4, 5, 1, 3, 2, 5, 5, 3, 1, 9, 2, 5, 0, 4, 1, 5, 5, 5, 1, 1, 6, 8, 0, 5, 0, 6, 0, 6, 1, 1, 9, 9, 5, 6, 1, 1, 6, 1, 8, 6, 7, 7, 8, 9, 0, 3, 4, 4, 6, 3, 3, 3, 3, 1, 5, 2, 7, 0, 3, 1, 3, 9, 3, 5, 5, 9, 1, 7, 6, 0, 6, 0, 1, 6, 8, 6, 0, 1, 3, 4, 9, 1, 7, 1, 6, 3, 2, 3, 1, 6, 6, 3, 3, 7, 7, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x: -1.1023847462794395958058183658678813...

greatest x: 0.203451325531925041555116805060611...

MATHEMATICA

a = 4; b = 4; c = 1;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -2, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]

RealDigits[r1] (* A198369 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .20, .21}, WorkingPrecision -> 110]

RealDigits[r2] (* A198370 *)

CROSSREFS

Cf. A197737.

Sequence in context: A290820 A278029 A066246 * A173517 A109921 A139637

Adjacent sequences:  A198367 A198368 A198369 * A198371 A198372 A198373

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 25 06:31 EST 2018. Contains 299643 sequences. (Running on oeis4.)