login
A198370
Decimal expansion of greatest x having 4*x^2+4x=cos(x).
3
2, 0, 3, 4, 5, 1, 3, 2, 5, 5, 3, 1, 9, 2, 5, 0, 4, 1, 5, 5, 5, 1, 1, 6, 8, 0, 5, 0, 6, 0, 6, 1, 1, 9, 9, 5, 6, 1, 1, 6, 1, 8, 6, 7, 7, 8, 9, 0, 3, 4, 4, 6, 3, 3, 3, 3, 1, 5, 2, 7, 0, 3, 1, 3, 9, 3, 5, 5, 9, 1, 7, 6, 0, 6, 0, 1, 6, 8, 6, 0, 1, 3, 4, 9, 1, 7, 1, 6, 3, 2, 3, 1, 6, 6, 3, 3, 7, 7, 6
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.1023847462794395958058183658678813...
greatest x: 0.203451325531925041555116805060611...
MATHEMATICA
a = 4; b = 4; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
RealDigits[r1] (* A198369 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .20, .21}, WorkingPrecision -> 110]
RealDigits[r2] (* A198370 *)
CROSSREFS
Cf. A197737.
Sequence in context: A278029 A338572 A066246 * A173517 A109921 A139637
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 24 2011
STATUS
approved