login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139637
If n = the k-th prime, then a(n) = the (k-1)th prime. If n = the k-th composite, then a(n) = the (k-1)th composite. a(2) = 1. a(4) = 0.
2
1, 2, 0, 3, 4, 5, 6, 8, 9, 7, 10, 11, 12, 14, 15, 13, 16, 17, 18, 20, 21, 19, 22, 24, 25, 26, 27, 23, 28, 29, 30, 32, 33, 34, 35, 31, 36, 38, 39, 37, 40, 41, 42, 44, 45, 43, 46, 48, 49, 50, 51, 47, 52, 54, 55, 56, 57, 53, 58, 59, 60, 62, 63, 64, 65, 61, 66, 68, 69, 67, 70, 71, 72
OFFSET
2,2
COMMENTS
This is a permutation of the nonnegative integers.
MAPLE
A000040 := proc(n) ithprime(n) ; end: A002808 := proc(n) local a; if n = 1 then 4; else for a from A002808(n-1)+1 do if not isprime(a) then RETURN(a) ; fi ; od: fi ; end: A066246 := proc(n) local k ; if isprime(n) then 0 ; else for k from 1 do if A002808(k) = n then RETURN(k) ; fi ; od: fi ; end: A049084 := proc(n) if not isprime(n) then 0; else numtheory[pi](n) ; fi ; end: A139637 := proc(n) local k; if n = 2 then 1; elif n = 4 then 0 ; else if isprime(n) then k := A049084(n) ; A000040(k-1) ; else k := A066246(n) ; A002808(k-1) ; fi ; fi ; end: seq(A139637(n), n=2..160) ; # R. J. Mathar, May 12 2008
CROSSREFS
Cf. A139636.
Sequence in context: A198370 A173517 A109921 * A307734 A363346 A243202
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 28 2008
EXTENSIONS
More terms from R. J. Mathar, May 12 2008
STATUS
approved