login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109921
a(2n) = prime(n). a(2n+1) = sum of composite numbers between prime(n) and prime(n+1). We define a(1) = 1.
2
1, 2, 0, 3, 4, 5, 6, 7, 27, 11, 12, 13, 45, 17, 18, 19, 63, 23, 130, 29, 30, 31, 170, 37, 117, 41, 42, 43, 135, 47, 250, 53, 280, 59, 60, 61, 320, 67, 207, 71, 72, 73, 380, 79, 243, 83, 430, 89, 651, 97, 297, 101, 102, 103, 315, 107, 108, 109, 333, 113, 1560, 127, 387, 131
OFFSET
1,2
COMMENTS
1 together with the sum of consecutive composites between primes interleaved with the primes. - Omar E. Pol, Oct 01 2012
LINKS
EXAMPLE
Contribution from Omar E. Pol, Oct 06 2012 (Start):
a(1) = 1, by definition. Also 1 is the first nonprime.
a(2) = 2, the first prime.
a(3) = 0, the sum of composite numbers between 2 and 3.
a(4) = 3, the second prime.
a(5) = 4, the sum of the composite numbers between 3 and 5.
a(6) = 5, the third prime.
a(7) = 6, the sum of the composite numbers between 5 and 7.
a(8) = 7, the fourth prime.
a(9) = 27, the sum of the composite numbers between 7 and 11, since 8+9+10 = 27.
a(10) = 11, the fifth prime.
(End)
MATHEMATICA
Join[{1}, With[{nn=40}, Riffle[Prime[Range[nn]], Table[Total[Range[Prime[n]+1, Prime[n+1]-1]], {n, nn}]]]] (* Harvey P. Dale, Jul 16 2023 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Jul 16 2005
EXTENSIONS
More terms from David Wasserman, Aug 15 2005
STATUS
approved