login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A198371
Decimal expansion of least x having 4*x^2+4x=3*cos(x).
3
1, 2, 1, 5, 0, 1, 2, 9, 8, 4, 2, 6, 4, 3, 5, 2, 4, 5, 7, 0, 4, 8, 8, 7, 1, 2, 8, 4, 9, 9, 1, 5, 0, 2, 5, 4, 8, 7, 5, 7, 7, 7, 4, 5, 5, 1, 7, 6, 4, 2, 1, 2, 8, 7, 0, 7, 3, 1, 8, 8, 3, 5, 3, 0, 9, 4, 3, 4, 5, 6, 6, 3, 5, 5, 5, 9, 7, 9, 3, 2, 3, 0, 6, 9, 0, 0, 6, 0, 6, 1, 6, 6, 4, 1, 0, 2, 7, 5, 2
OFFSET
1,2
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.21501298426435245704887128499150254...
greatest x: 0.460194997750930971424797277964558861...
MATHEMATICA
a = 4; b = 4; c = 3;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.3, -1.2}, WorkingPrecision -> 110]
RealDigits[r1] (* A198371 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .46, .47}, WorkingPrecision -> 110]
RealDigits[r2] (* A198372 *)
CROSSREFS
Cf. A197737.
Sequence in context: A093876 A375605 A322334 * A352559 A127477 A104505
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 24 2011
STATUS
approved