|
|
A127477
|
|
Triangle T(n,k) read by rows: matrix product A054522 * A054523.
|
|
2
|
|
|
1, 2, 1, 5, 0, 2, 6, 3, 0, 2, 17, 0, 0, 0, 4, 10, 5, 4, 0, 0, 2, 37, 0, 0, 0, 0, 0, 6, 22, 11, 0, 6, 0, 0, 0, 4, 41, 0, 14, 0, 0, 0, 0, 0, 6, 34, 17, 0, 0, 8, 0, 0, 0, 0, 4, 101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 30, 15, 12, 10, 0, 6, 0, 0, 0, 0, 0, 4, 145, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 74, 37, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
If the two matrices A054522 and A054523 are commuted, the matrix product becomes A127478.
|
|
LINKS
|
Table of n, a(n) for n=1..94.
|
|
FORMULA
|
T(n,k) = sum_{j=k..n} A054522(n,j) * A054523(j,k).
sum_{k=1..n} T(n,k) = A057660(n) (row sums).
T(n,n) = A000010(n) (diagonal).
T(n,1) = A029939(n).
|
|
EXAMPLE
|
First few rows of the triangle are:
1;
2, 1;
5, 0, 2;
6, 3, 0, 2;
17, 0, 0, 0, 4;
10, 5, 4, 0, 0, 2;
37, 0, 0, 0, 0, 0, 6;
22, 11, 0, 6, 0, 0, 0, 4;
|
|
MAPLE
|
A054522 := proc(n, k) if k = 1 then 1; elif n mod k = 0 then numtheory[phi](k) ; else 0 ; fi; end:
A054523 := proc(n, k) if k = n then 1; elif n mod k = 0 then numtheory[phi](n/k) ; else 0 ; fi; end:
A127477 := proc(n, k) add( A054522(n, j)*A054523(j, k), j=k..n) ; end: seq(seq( A127477(n, k), k=1..n), n=1..15) ;
|
|
CROSSREFS
|
Cf. A054522, A054523, A057660, A000010, A029939.
Sequence in context: A322334 A198371 A352559 * A104505 A324185 A348175
Adjacent sequences: A127474 A127475 A127476 * A127478 A127479 A127480
|
|
KEYWORD
|
nonn,tabl,easy
|
|
AUTHOR
|
Gary W. Adamson, Jan 15 2007
|
|
EXTENSIONS
|
Converted comments to formulas, extended - R. J. Mathar, Sep 11 2009
|
|
STATUS
|
approved
|
|
|
|