login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198337
Radius of rooted tree having Matula-Goebel number n.
0
0, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 1, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 3, 1, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 3, 2, 1, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 1, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 3, 3, 2, 2, 3, 2, 2, 3, 2
OFFSET
1,5
COMMENTS
The radius of a tree is defined as the minimum eccentricity of the vertices.
The radius of a tree is equal to the number of prunings required to reduce the tree to the 1-vertex tree. See the Balaban reference, p. 360.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
REFERENCES
A. T. Balaban, Chemical graphs, Theoret. Chim. Acta (Berl.) 53, 355-375, 1979.
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
FORMULA
A198336(n) gives the sequence of the Matula-Goebel numbers of the rooted trees obtained from the rooted tree with Matula-Goebel number n by pruning it successively 0,1,2,... times. Then the radius of the rooted tree with Matula-Goebel number n is equal to the number of terms in this sequence diminished by 1.
EXAMPLE
a(7)=1 because the rooted tree with Matula-Goebel number 7 is Y and its vertices have eccentricities 2,2,2,1. a(11)=2 because the rooted tree with Matula-Goebel number 11 is the path tree on 5 vertices and the eccentricities are 4,4,3,3,2.
MAPLE
with(numtheory): aa := proc (n) local r, s, b: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: b := proc (n) if n = 1 then 1 elif n = 2 then 1 elif bigomega(n) = 1 then ithprime(b(pi(n))) else b(r(n))*b(s(n)) end if end proc: if n = 1 then 1 elif bigomega(n) = 1 then b(pi(n)) else b(r(n))*b(s(n)) end if end proc: S := proc (m) local A, i: A[m, 1] := m; for i while aa(A[m, i]) < A[m, i] do A[m, i+1] := aa(A[m, i]) end do: seq(A[m, j], j = 1 .. i) end proc; a := proc (n) options operator, arrow: nops([S(n)])-1 end proc: seq(a(n), n = 1 .. 110);
MATHEMATICA
r[n_] := FactorInteger[n][[1, 1]];
s[n_] := n/r[n];
b[n_] := Which[n == 1, 1, n == 2, 1, PrimeOmega[n] == 1, Prime[b[PrimePi[n]]], True, b[r[n]]*b[s[n]]];
aa[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, b[PrimePi[n]], True, b[r[n]]*b[s[n]]];
S[m_] := Module[{A, i}, A[m, 1] = m; For[i = 1, aa[A[m, i]] < A[m, i], i++, A[m, i + 1] = aa[A[m, i]]]; Table[A[m, j], {j, 1, i}]];
a[n_] := Length[S[n]] - 1;
Table[a[n], {n, 1, 110}] (* Jean-François Alcover, Aug 12 2024, after Emeric Deutsch *)
CROSSREFS
Cf. A198336.
Sequence in context: A212632 A359477 A025885 * A206483 A087011 A294602
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 01 2011
STATUS
approved