login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198340
The overall Wiener index of the rooted tree having Matula-Goebel number n.
1
0, 1, 6, 6, 21, 21, 24, 24, 56, 56, 56, 67, 67, 67, 126, 80, 67, 161, 80, 154, 154, 126, 161, 197, 252, 161, 354, 188, 154, 333, 126, 240, 252, 154, 311, 440, 197, 197, 333, 414, 161, 411, 188, 311, 683, 354, 333, 545, 384, 636, 311, 411, 240, 921, 462, 510
OFFSET
1,3
COMMENTS
The overall Wiener index of any connected graph G is defined as the sum of the Wiener indices of all the subgraphs of G. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
REFERENCES
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
D. Bonchev, The overall Wiener index - a new tool for characterization of molecular topology, J. Chem. Inf. Comput. Sci., 2001, 41, 582-592.
FORMULA
A198339(n) gives the sequence of the Matula-Goebel numbers of all the subtrees of the rooted tree with Matula-Goebel number n. A196051(k) is the Wiener number of the rooted tree with Matula-Goebel number k.
EXAMPLE
a(4)=6 because the rooted tree with Matula-Goebel number 4 is V; each of the 3 one-vertex subtrees has Wiener index 0, each of the 2 one-edge subtrees has Wiener index 1, and the tree V itself has Wiener index 4; 0+0+0+1+1+4=6.
MAPLE
m2union := proc (x, y) sort([op(x), op(y)]) end proc: with(numtheory); MRST := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [1] elif bigomega(n) = 1 then [1, seq(ithprime(mrst[pi(n)][i]), i = 1 .. nops(mrst[pi(n)]))] else [seq(seq(mrst[r(n)][i]*mrst[s(n)][j], i = 1 .. nops(mrst[r(n)])), j = 1 .. nops(mrst[s(n)]))] end if end proc: MNRST := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [] elif bigomega(n) = 1 then m2union(mrst[pi(n)], mnrst[pi(n)]) else m2union(mnrst[r(n)], mnrst[s(n)]) end if end proc: MST := proc (n) m2union(mrst[n], mnrst[n]) end proc: for n to 2000 do mrst[n] := MRST(n): mnrst[n] := MNRST(n): mst[n] := MST(n) end do: W := proc (n) local u, v, E, PL: u := proc (n) options operator, arrow: op(1, factorset(n)) end proc: v := proc (n) options operator, arrow: n/u(n) end proc: E := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then 1+E(pi(n)) else E(u(n))+E(v(n)) end if end proc: PL := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then 1+E(pi(n))+PL(pi(n)) else PL(u(n))+PL(v(n)) end if end proc: if n = 1 then 0 elif bigomega(n) = 1 then W(pi(n))+PL(pi(n))+1+E(pi(n)) else W(u(n))+W(v(n))+PL(u(n))*E(v(n))+PL(v(n))*E(u(n)) end if end proc: OW := proc (n) options operator, arrow: add(W(MST(n)[j]), j = 1 .. nops(MST(n))) end proc: seq(OW(n), n = 1 .. 60);
CROSSREFS
Sequence in context: A298936 A034695 A339338 * A189980 A188273 A185786
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 04 2011
STATUS
approved