login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198340 The overall Wiener index of the rooted tree having Matula-Goebel number n. 1
0, 1, 6, 6, 21, 21, 24, 24, 56, 56, 56, 67, 67, 67, 126, 80, 67, 161, 80, 154, 154, 126, 161, 197, 252, 161, 354, 188, 154, 333, 126, 240, 252, 154, 311, 440, 197, 197, 333, 414, 161, 411, 188, 311, 683, 354, 333, 545, 384, 636, 311, 411, 240, 921, 462, 510 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The overall Wiener index of any connected graph G is defined as the sum of the Wiener indices of all the subgraphs of G. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph.

The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.

REFERENCES

F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.

I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.

I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.

D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.

D. Bonchev, The overall Wiener index - a new tool for characterization of molecular topology, J. Chem. Inf. Comput. Sci., 2001, 41, 582-592.

LINKS

Table of n, a(n) for n=1..56.

E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288.

Index entries for sequences related to Matula-Goebel numbers

FORMULA

A198339(n) gives the sequence of the Matula-Goebel numbers of all the subtrees of the rooted tree with Matula-Goebel number n. A196051(k) is the Wiener number of the rooted tree with Matula-Goebel number k.

EXAMPLE

a(4)=6 because the rooted tree with Matula-Goebel number 4 is V; each of the 3 one-vertex subtrees has Wiener index 0, each of the 2 one-edge subtrees has Wiener index 1, and the tree V itself has Wiener index 4; 0+0+0+1+1+4=6.

MAPLE

m2union := proc (x, y) sort([op(x), op(y)]) end proc: with(numtheory); MRST := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [1] elif bigomega(n) = 1 then [1, seq(ithprime(mrst[pi(n)][i]), i = 1 .. nops(mrst[pi(n)]))] else [seq(seq(mrst[r(n)][i]*mrst[s(n)][j], i = 1 .. nops(mrst[r(n)])), j = 1 .. nops(mrst[s(n)]))] end if end proc: MNRST := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [] elif bigomega(n) = 1 then m2union(mrst[pi(n)], mnrst[pi(n)]) else m2union(mnrst[r(n)], mnrst[s(n)]) end if end proc: MST := proc (n) m2union(mrst[n], mnrst[n]) end proc: for n to 2000 do mrst[n] := MRST(n): mnrst[n] := MNRST(n): mst[n] := MST(n) end do: W := proc (n) local u, v, E, PL: u := proc (n) options operator, arrow: op(1, factorset(n)) end proc: v := proc (n) options operator, arrow: n/u(n) end proc: E := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then 1+E(pi(n)) else E(u(n))+E(v(n)) end if end proc: PL := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then 1+E(pi(n))+PL(pi(n)) else PL(u(n))+PL(v(n)) end if end proc: if n = 1 then 0 elif bigomega(n) = 1 then W(pi(n))+PL(pi(n))+1+E(pi(n)) else W(u(n))+W(v(n))+PL(u(n))*E(v(n))+PL(v(n))*E(u(n)) end if end proc: OW := proc (n) options operator, arrow: add(W(MST(n)[j]), j = 1 .. nops(MST(n))) end proc: seq(OW(n), n = 1 .. 60);

CROSSREFS

Cf. A196051, A198339.

Sequence in context: A298936 A034695 A339338 * A189980 A188273 A185786

Adjacent sequences:  A198337 A198338 A198339 * A198341 A198342 A198343

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Dec 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 05:05 EST 2021. Contains 349445 sequences. (Running on oeis4.)