login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198335
Triangle read by rows: T(n,k) is 1/2 of the number of walks of length k (1<=k<=n-1) in the path graph on n vertices (n>=2).
1
1, 2, 3, 3, 5, 8, 4, 7, 12, 21, 5, 9, 16, 29, 52, 6, 11, 20, 37, 68, 126, 7, 13, 24, 45, 84, 158, 296, 8, 15, 28, 53, 100, 190, 360, 685, 9, 17, 32, 61, 116, 222, 424, 813, 1556, 10, 19, 36, 69, 132, 254, 488, 941, 1812, 3498, 11, 21, 40, 77, 148, 286, 552, 1069, 2068, 4010, 7768
OFFSET
2,2
COMMENTS
Sum of entries in row n is A144952(n) (n>=2).
T(n,n-1)=(1/2)A102699(n).
REFERENCES
G. Rucker and C. Rucker, Walk counts, labyrinthicity and complexity of acyclic and cyclic graphs and molecules, J. Chem. Inf. Comput. Sci., 40 (2000), 99-106.
FORMULA
It is known that if A is the adjacency matrix of a graph G, then the (i,j)-entry of the matrix A^k is equal to the number of walks from vertex i to vertex j. Consequently, T(n,k) is 1/2 of the sum of the entries of the matrix A^k (see the Maple program).
EXAMPLE
T(3,1)=2 and T(3,2)=3 because in the path a - b - c we have 4 walks of length 1 (ab, bc, ba, cb) and 6 walks of length 2 (aba, abc, bab, bcb, cbc, cba).
Triangle starts:
1;
2,3;
3,5,8;
4,7,12,21;
5,9,16,29,52;
MAPLE
with(GraphTheory): T := proc (n, k) local G, A, B: G := PathGraph(n): A := AdjacencyMatrix(G): B := A^k: if k < n then (1/2)*add(add(B[i, j], i = 1 .. n), j = 1 .. n) else 0 end if end proc: for n from 2 to 12 do seq(T(n, k), k = 1 .. n-1) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Dec 01 2011
EXTENSIONS
Keyword tabl added by Michel Marcus, Apr 09 2013
STATUS
approved