

A197519


Decimal expansion of least x>0 having cos(2*Pi*x)=(cos 2x)^2.


2



7, 5, 0, 7, 6, 2, 4, 9, 0, 2, 2, 7, 8, 8, 1, 2, 7, 5, 3, 4, 1, 9, 7, 3, 6, 3, 1, 4, 4, 3, 1, 3, 9, 0, 7, 8, 5, 6, 8, 2, 5, 7, 2, 2, 6, 5, 3, 6, 1, 7, 0, 5, 6, 2, 8, 1, 9, 2, 4, 9, 7, 2, 1, 3, 0, 1, 6, 8, 1, 6, 8, 8, 9, 7, 7, 7, 2, 5, 0, 4, 2, 1, 4, 2, 5, 2, 9, 2, 5, 2, 5, 6, 7, 6, 8, 3, 4, 1, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The Mathematica program includes a graph. See A197476 for a guide for the least x>0 satisfying cos(b*x)=(cos(c*x))^2 for selected b and c.


LINKS



EXAMPLE

0.7507624902278812753419736314431390785682572...


MATHEMATICA

b = 2 Pi; c = 2; f[x_] := Cos[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .75, .76}, WorkingPrecision > 200]
Plot[{f[b*x], f[c*x]^2}, {x, 0, Pi/2}]


CROSSREFS



KEYWORD



AUTHOR



EXTENSIONS



STATUS

approved



