The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A197521 Decimal expansion of least x>0 having cos(Pi*x/2)=(cos Pi*x/3)^2. 3
 3, 5, 2, 1, 3, 3, 7, 8, 2, 9, 5, 7, 1, 7, 1, 5, 6, 9, 8, 6, 9, 1, 9, 8, 8, 5, 6, 4, 4, 5, 4, 9, 1, 7, 9, 7, 7, 3, 0, 9, 1, 8, 1, 3, 9, 4, 7, 3, 3, 6, 8, 8, 7, 1, 9, 5, 4, 9, 1, 8, 4, 8, 6, 2, 5, 1, 5, 5, 9, 0, 6, 0, 9, 6, 1, 0, 2, 5, 9, 8, 8, 8, 9, 7, 4, 9, 7, 5, 6, 9, 0, 0, 3, 9, 4, 9, 7, 1, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The Mathematica program includes a graph. See A197476 for a guide for the least x>0 satisfying cos(b*x)=(cos(c*x))^2 for selected b and c. Conjecture: the constant here, 3.52133782..., is 3 plus the constant in A197383, the latter being the least t>0 satisfying sin(pi*t/6)=(sin pi*t/3)^2. LINKS Table of n, a(n) for n=1..99. EXAMPLE x=3.521337829571715698691988564454917977309181394... MATHEMATICA b = Pi/2; c = Pi/3; f[x_] := Cos[x] t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 3.5, 3.53}, WorkingPrecision -> 200] RealDigits[t] (* A197521, appears to be 3+A197383 *) Plot[{f[b*x], f[c*x]^2}, {x, 0, 4}] RealDigits[ 6*ArcCos[ Root[ -1 - 4# + 4#^3 & , 2]]/Pi, 10, 99] // First (* _Jean-François Alcover_, Feb 19 2013 *) CROSSREFS Cf. A197476. Sequence in context: A021288 A140735 A183206 * A161865 A145325 A282194 Adjacent sequences: A197518 A197519 A197520 * A197522 A197523 A197524 KEYWORD nonn,cons AUTHOR _Clark Kimberling_, Oct 16 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 4 23:31 EST 2024. Contains 370537 sequences. (Running on oeis4.)