login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A197521 Decimal expansion of least x>0 having cos(Pi*x/2)=(cos Pi*x/3)^2. 3
3, 5, 2, 1, 3, 3, 7, 8, 2, 9, 5, 7, 1, 7, 1, 5, 6, 9, 8, 6, 9, 1, 9, 8, 8, 5, 6, 4, 4, 5, 4, 9, 1, 7, 9, 7, 7, 3, 0, 9, 1, 8, 1, 3, 9, 4, 7, 3, 3, 6, 8, 8, 7, 1, 9, 5, 4, 9, 1, 8, 4, 8, 6, 2, 5, 1, 5, 5, 9, 0, 6, 0, 9, 6, 1, 0, 2, 5, 9, 8, 8, 8, 9, 7, 4, 9, 7, 5, 6, 9, 0, 0, 3, 9, 4, 9, 7, 1, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The Mathematica program includes a graph. See A197476 for a guide for the least x>0 satisfying cos(b*x)=(cos(c*x))^2 for selected b and c.
Conjecture: the constant here, 3.52133782..., is 3 plus the constant in A197383, the latter being the least t>0 satisfying sin(pi*t/6)=(sin pi*t/3)^2.
LINKS
EXAMPLE
x=3.521337829571715698691988564454917977309181394...
MATHEMATICA
b = Pi/2; c = Pi/3; f[x_] := Cos[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 3.5, 3.53}, WorkingPrecision -> 200]
RealDigits[t] (* A197521, appears to be 3+A197383 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, 4}]
RealDigits[ 6*ArcCos[ Root[ -1 - 4# + 4#^3 & , 2]]/Pi, 10, 99] // First (* _Jean-François Alcover_, Feb 19 2013 *)
CROSSREFS
Cf. A197476.
Sequence in context: A021288 A140735 A183206 * A161865 A145325 A282194
KEYWORD
nonn,cons
AUTHOR
_Clark Kimberling_, Oct 16 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 4 23:31 EST 2024. Contains 370537 sequences. (Running on oeis4.)