

A197516


Decimal expansion of least x>0 having cos(Pi*x)=(cos 2x)^2.


2



1, 7, 9, 8, 5, 9, 1, 0, 3, 7, 0, 2, 8, 6, 9, 8, 4, 4, 2, 7, 7, 5, 5, 7, 2, 9, 2, 8, 4, 5, 2, 1, 6, 1, 3, 1, 1, 7, 0, 8, 8, 7, 0, 5, 1, 1, 1, 7, 5, 7, 5, 5, 6, 1, 5, 0, 4, 0, 8, 7, 1, 5, 6, 4, 2, 6, 4, 7, 6, 4, 6, 4, 9, 7, 8, 2, 0, 0, 6, 9, 9, 0, 1, 9, 0, 4, 3, 4, 6, 4, 0, 4, 9, 1, 3, 8, 5, 3, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The Mathematica program includes a graph. See A197476 for a guide for the least x>0 satisfying cos(b*x)=(cos(c*x))^2 for selected b and c.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=1.79859103702869844277557292845216131170...


MATHEMATICA

b = Pi; c = 2; f[x_] := Cos[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 1.7, 1.8}, WorkingPrecision > 200]
RealDigits[t] (* A197516 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, 3}]


CROSSREFS

Cf. A197476.
Sequence in context: A126041 A319881 A021560 * A019862 A330865 A300444
Adjacent sequences: A197513 A197514 A197515 * A197517 A197518 A197519


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 16 2011


STATUS

approved



