OFFSET
0,1
FORMULA
Equals Sum_{k>=0} Pi^(2*k-1)/(4^k*(2*k)!).
Equals Product_{k>=2} (1 - (-1)^k/k^2).
Equals (i^(-i) + i^i)/(2*Pi), where i is the imaginary unit.
EXAMPLE
(1 - 1/2^2) * (1 + 1/3^2) * (1 - 1/4^2) * (1 + 1/5^2) * (1 - 1/6^2) * ... = (e^(Pi/2) + e^(-Pi/2))/(2*Pi) = 0.7986963159564630848638067...
MATHEMATICA
RealDigits[Cosh[Pi/2]/Pi, 10, 110] [[1]]
PROG
(PARI) cosh(Pi/2)/Pi \\ Michel Marcus, Apr 28 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Ilya Gutkovskiy, Apr 28 2020
STATUS
approved