

A197034


Decimal expansion of the xintercept of the shortest segment from the x axis through (3,1) to the line y=x.


3



3, 4, 7, 7, 9, 6, 7, 2, 4, 3, 0, 0, 9, 0, 1, 2, 4, 7, 4, 6, 4, 6, 9, 2, 5, 0, 8, 1, 3, 4, 2, 1, 7, 5, 1, 0, 1, 4, 4, 7, 5, 4, 9, 5, 5, 2, 7, 5, 8, 1, 9, 3, 4, 4, 4, 2, 3, 5, 9, 0, 9, 9, 3, 8, 6, 0, 4, 6, 0, 4, 0, 6, 3, 1, 9, 6, 0, 1, 1, 8, 7, 6, 9, 8, 4, 9, 7, 7, 5, 3, 6, 2, 6, 5, 5, 3, 0, 8, 5, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The shortest segment from one side of an angle T through a point P inside T is called the Philo line of P in T. For discussions and guides to related sequences, see A197008 and A195284.


LINKS

Table of n, a(n) for n=1..100.


EXAMPLE

length of Philo line: 2.60819402496101...; see A197035
endpoint on x axis: (3.47797, 0)
endpoint on line y=x: (2.35321, 2.35321)


MATHEMATICA

f[t_] := (t  k*t/(k + m*t  m*h))^2 + (m*k*t/(k + m*t  m*h))^2;
g[t_] := D[f[t], t]; Factor[g[t]]
p[t_] := h^2 k + k^3  h^3 m  h k^2 m  3 h k t + 3 h^2 m t + 2 k t^2  3 h m t^2 + m t^3
m = 1; h = 3; k = 1; (* slope m; point (h, k) *)
t = t1 /. FindRoot[p[t1] == 0, {t1, 1, 2}, WorkingPrecision > 100]
RealDigits[t] (* A197034 *)
{N[t], 0} (* endpoint on x axis *)
{N[k*t/(k + m*t  m*h)], N[m*k*t/(k + m*t  m*h)]} (* upper endpoint *)
d = N[Sqrt[f[t]], 100]
RealDigits[d] (* A197035 *)
Show[Plot[{k*(x  t)/(h  t), m*x}, {x, 0, 4}],
ContourPlot[(x  h)^2 + (y  k)^2 == .002, {x, 0, 3.5}, {y, 0, 3}], PlotRange > {0, 3}, AspectRatio > Automatic]


CROSSREFS

Cf. A197032, A197035, A197008, A195284.
Sequence in context: A021746 A081826 A023849 * A180020 A162431 A024605
Adjacent sequences: A197031 A197032 A197033 * A197035 A197036 A197037


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 10 2011


STATUS

approved



