%I
%S 3,4,7,7,9,6,7,2,4,3,0,0,9,0,1,2,4,7,4,6,4,6,9,2,5,0,8,1,3,4,2,1,7,5,
%T 1,0,1,4,4,7,5,4,9,5,5,2,7,5,8,1,9,3,4,4,4,2,3,5,9,0,9,9,3,8,6,0,4,6,
%U 0,4,0,6,3,1,9,6,0,1,1,8,7,6,9,8,4,9,7,7,5,3,6,2,6,5,5,3,0,8,5,2
%N Decimal expansion of the xintercept of the shortest segment from the x axis through (3,1) to the line y=x.
%C The shortest segment from one side of an angle T through a point P inside T is called the Philo line of P in T. For discussions and guides to related sequences, see A197008 and A195284.
%e length of Philo line: 2.60819402496101...; see A197035
%e endpoint on x axis: (3.47797, 0)
%e endpoint on line y=x: (2.35321, 2.35321)
%t f[t_] := (t  k*t/(k + m*t  m*h))^2 + (m*k*t/(k + m*t  m*h))^2;
%t g[t_] := D[f[t], t]; Factor[g[t]]
%t p[t_] := h^2 k + k^3  h^3 m  h k^2 m  3 h k t + 3 h^2 m t + 2 k t^2  3 h m t^2 + m t^3
%t m = 1; h = 3; k = 1; (* slope m; point (h,k) *)
%t t = t1 /. FindRoot[p[t1] == 0, {t1, 1, 2}, WorkingPrecision > 100]
%t RealDigits[t] (* A197034 *)
%t {N[t], 0} (* endpoint on x axis *)
%t {N[k*t/(k + m*t  m*h)], N[m*k*t/(k + m*t  m*h)]} (* upper endpoint *)
%t d = N[Sqrt[f[t]], 100]
%t RealDigits[d] (* A197035 *)
%t Show[Plot[{k*(x  t)/(h  t), m*x}, {x, 0, 4}],
%t ContourPlot[(x  h)^2 + (y  k)^2 == .002, {x, 0, 3.5}, {y, 0, 3}], PlotRange > {0, 3}, AspectRatio > Automatic]
%Y Cf. A197032, A197035, A197008, A195284.
%K nonn,cons
%O 1,1
%A _Clark Kimberling_, Oct 10 2011
