login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196553
Decimal expansion of the number x satisfying x*2^x=6.
5
1, 7, 6, 5, 1, 6, 1, 9, 4, 8, 2, 5, 6, 6, 9, 9, 1, 3, 7, 1, 8, 5, 0, 5, 5, 7, 0, 3, 2, 8, 6, 4, 6, 5, 2, 8, 1, 8, 0, 0, 7, 3, 5, 6, 2, 0, 0, 3, 2, 7, 1, 8, 7, 7, 2, 9, 5, 0, 5, 5, 9, 5, 9, 2, 4, 8, 4, 5, 8, 3, 8, 5, 4, 9, 4, 0, 9, 3, 1, 5, 1, 5, 4, 5, 2, 2, 3, 3, 3, 8, 3, 4, 8, 3, 0, 1, 6, 8, 6, 6
OFFSET
1,2
EXAMPLE
x=1.765161948256699137185055703286465281800...
MATHEMATICA
Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A104748 *)
t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196549 *)
t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196550 *)
t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196551 *)
t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196552 *)
t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196553 *)
RealDigits[ ProductLog[ 6*Log[2] ] / Log[2], 10, 100] // First (* Jean-François Alcover, Feb 27 2013 *)
CROSSREFS
Sequence in context: A094961 A069814 A198816 * A244921 A372951 A334380
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 03 2011
EXTENSIONS
Digits from a(94) on corrected by Jean-François Alcover, Feb 27 2013
STATUS
approved