login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196553 Decimal expansion of the number x satisfying x*2^x=6. 5
1, 7, 6, 5, 1, 6, 1, 9, 4, 8, 2, 5, 6, 6, 9, 9, 1, 3, 7, 1, 8, 5, 0, 5, 5, 7, 0, 3, 2, 8, 6, 4, 6, 5, 2, 8, 1, 8, 0, 0, 7, 3, 5, 6, 2, 0, 0, 3, 2, 7, 1, 8, 7, 7, 2, 9, 5, 0, 5, 5, 9, 5, 9, 2, 4, 8, 4, 5, 8, 3, 8, 5, 4, 9, 4, 0, 9, 3, 1, 5, 1, 5, 4, 5, 2, 2, 3, 3, 3, 8, 3, 4, 8, 3, 0, 1, 6, 8, 6, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..100.

EXAMPLE

x=1.765161948256699137185055703286465281800...

MATHEMATICA

Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]

t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]

RealDigits[t]  (* A104748 *)

t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100]

RealDigits[t]  (* A196549 *)

t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]

RealDigits[t]  (* A196550 *)

t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]

RealDigits[t]  (* A196551 *)

t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]

RealDigits[t]  (* A196552 *)

t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]

RealDigits[t]  (* A196553 *)

RealDigits[ ProductLog[ 6*Log[2] ] / Log[2], 10, 100] // First (* Jean-François Alcover, Feb 27 2013 *)

CROSSREFS

Sequence in context: A094961 A069814 A198816 * A244921 A334380 A101464

Adjacent sequences:  A196550 A196551 A196552 * A196554 A196555 A196556

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 03 2011

EXTENSIONS

Digits from a(94) on corrected by Jean-François Alcover, Feb 27 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 19:53 EDT 2021. Contains 343903 sequences. (Running on oeis4.)