The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196549 Decimal expansion of the number x satisfying x*2^x=e. 5
 1, 1, 9, 0, 7, 8, 3, 6, 8, 2, 9, 7, 3, 2, 9, 5, 9, 1, 5, 3, 1, 8, 0, 0, 2, 5, 0, 6, 8, 5, 8, 5, 7, 0, 1, 0, 1, 7, 3, 3, 5, 7, 2, 6, 5, 9, 1, 9, 2, 2, 8, 4, 2, 6, 7, 1, 3, 7, 1, 5, 2, 4, 4, 3, 0, 2, 6, 6, 5, 0, 3, 8, 9, 6, 7, 2, 9, 8, 7, 5, 9, 3, 4, 9, 2, 1, 0, 0, 9, 3, 7, 7, 2, 2, 0, 3, 3, 3, 7, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS EXAMPLE x=1.19078368297329591531800250685857010... MATHEMATICA Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}] t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A104748 *) t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196549 *) t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100] RealDigits[t]  (* A196550 *) t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100] RealDigits[t]  (* A196551 *) t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100] RealDigits[t]  (* A196552 *) t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100] RealDigits[t]  (* A196553 *) RealDigits[ ProductLog[ E*Log[2] ] / Log[2], 10, 100] // First (* Jean-François Alcover, Feb 27 2013 *) CROSSREFS Cf. A196515. Sequence in context: A093766 A097674 A309823 * A173164 A298743 A181446 Adjacent sequences:  A196546 A196547 A196548 * A196550 A196551 A196552 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 13:44 EDT 2021. Contains 345057 sequences. (Running on oeis4.)