login
Decimal expansion of the number x satisfying x*2^x=6.
5

%I #8 Feb 27 2013 03:29:02

%S 1,7,6,5,1,6,1,9,4,8,2,5,6,6,9,9,1,3,7,1,8,5,0,5,5,7,0,3,2,8,6,4,6,5,

%T 2,8,1,8,0,0,7,3,5,6,2,0,0,3,2,7,1,8,7,7,2,9,5,0,5,5,9,5,9,2,4,8,4,5,

%U 8,3,8,5,4,9,4,0,9,3,1,5,1,5,4,5,2,2,3,3,3,8,3,4,8,3,0,1,6,8,6,6

%N Decimal expansion of the number x satisfying x*2^x=6.

%e x=1.765161948256699137185055703286465281800...

%t Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]

%t t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]

%t RealDigits[t] (* A104748 *)

%t t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196549 *)

%t t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196550 *)

%t t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196551 *)

%t t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196552 *)

%t t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196553 *)

%t RealDigits[ ProductLog[ 6*Log[2] ] / Log[2], 10, 100] // First (* _Jean-François Alcover_, Feb 27 2013 *)

%K nonn,cons

%O 1,2

%A _Clark Kimberling_, Oct 03 2011

%E Digits from a(94) on corrected by _Jean-François Alcover_, Feb 27 2013