|
|
A194822
|
|
a(n) = 3+floor(sum{<((-1)^k)*k*sqrt(3)> : 1<=k<=n}), where < > = fractional part.
|
|
4
|
|
|
2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The first negative term is a(1291) = -1. - Georg Fischer, Feb 15 2019
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
r = GoldenRatio; p[x_] := FractionalPart[x];
f[n_] := 3 + Floor[Sum[p[k*r] (-1)^k, {k, 1, n}]]
Table[f[n], {n, 1, 100}] (* A194822 *)
|
|
PROG
|
(PARI) for(n=1, 50, print1(3 + floor(sum(k=1, n, (-1)^k*frac(k*(1+sqrt(5))/2)), ", ")) \\ G. C. Greubel, Apr 02 2018
(Magma) [3 + Floor((&+[(-1)^k*(k*(1+Sqrt(5))/2 - Floor(k*(1+Sqrt(5))/2)) :k in [1..n]])) : n in [1..50]]; // G. C. Greubel, Apr 02 2018
|
|
CROSSREFS
|
Cf. A194821, A194823, A194824.
Sequence in context: A089049 A275235 A029420 * A029405 A339383 A198260
Adjacent sequences: A194819 A194820 A194821 * A194823 A194824 A194825
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Clark Kimberling, Sep 03 2011
|
|
STATUS
|
approved
|
|
|
|