login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194825
Digital roots of the nonzero 9-gonal (nonagonal) numbers.
0
1, 9, 6, 1, 3, 3, 1, 6, 9, 1, 9, 6, 1, 3, 3, 1, 6, 9, 1, 9, 6, 1, 3, 3, 1, 6, 9, 1, 9, 6, 1, 3, 3, 1, 6, 9, 1, 9, 6, 1, 3, 3, 1, 6, 9, 1, 9, 6, 1, 3, 3, 1, 6, 9, 1, 9, 6, 1, 3, 3, 1, 6, 9, 1, 9, 6, 1, 3, 3, 1, 6, 9, 1, 9, 6, 1, 3, 3, 1, 6, 9, 1, 9, 6, 1, 3
OFFSET
1,2
COMMENTS
This is a periodic sequence with period 9 and cycle 1,9,6,1,3,3,1,6,9, which are also the coefficients of x in the numerator of the generating function.
FORMULA
a(n) = a(n-9).
a(n) = 39-a(n-1)-a(n-2)-a(n-3)-a(n-4)-a(n-5)-a(n-6)-a(n-7)-a(n-8).
a(n) = 2*(1+cos(2*n*Pi/9)+cos(2*n*Pi/3)+cos(4*n*Pi/9)+cos(8*n*Pi/9)+cos(4*(n-2)*Pi/9)+cos(2*(n-2)*Pi/3)+cos(8*(n-2)*Pi/9))+cos(2*(n-2)*Pi/9)+cos(4*(4*n+1)*Pi/9) + mod(8*n+5*n^2+8*n^3+5*n^4+8*n^5+2*n^6+5*n^7+5*n^8,9).
G.f.: x*(1+9*x+6*x^2+x^3+3*x^4+3*x^5+x^6+6*x^7+9*x^8)/((1-x)*(1+x+x^2)*(1+x^3+x^6)).
a(n) = A010888(A001106(n)). - Michel Marcus, Aug 10 2015
EXAMPLE
The sixth nonzero 9-gonal (nonagonal) number is A001106(6)=111. As 1+1+1=3, this has digital root 3 and so a(6)=3.
MATHEMATICA
DigitalRoot[n_]:=FixedPoint[Plus@@IntegerDigits[#]&, n]; Table[DigitalRoot[n*(7*n-5)/2], {n, 100}]
dr[n_]:=FixedPoint[Total[IntegerDigits[#]]&, n]; dr/@PolygonalNumber[ 9, Range[ 90]] (* Requires Mathematica version 10 or later *) (* or *) PadRight[{}, 90, {1, 9, 6, 1, 3, 3, 1, 6, 9}] (* Harvey P. Dale, Jun 26 2021 *)
PROG
(PARI) a(n)=n*(7*n-5)/2%9 \\ Charles R Greathouse IV, Sep 15 2013
CROSSREFS
Sequence in context: A075567 A019883 A085574 * A092732 A342680 A176532
KEYWORD
nonn,easy,base
AUTHOR
Ant King, Sep 03 2011
STATUS
approved