OFFSET
1,1
COMMENTS
The positive solution to x=3*(1-exp(-x)) is the dimensionless coefficient corresponding to the maximum brightness in Planck's law of radiation.
It can be symbolically expressed as 3+W(-3/e^3), where W stands for Lambert (a.k.a. "ProductLog") function.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..2000
SpectralCalc, Calculation of Blackbody Radiance, Appendix C.
Wikipedia, Planck's law
EXAMPLE
2.821439372...
MAPLE
evalf(3+LambertW(-3/exp(3)), 130); # Alois P. Heinz, May 08 2024
MATHEMATICA
RealDigits[ N[x /. ToRules[ Reduce[x > 0 && x == 3*(1 - E^-x), x, Reals]], 100]][[1]]
RealDigits[3 + ProductLog[-3/E^3], 10, 111][[1]] (* Robert G. Wilson v, Oct 16 2013 *)
RealDigits[x/.FindRoot[x==3(1-Exp[-x]), {x, 2}, WorkingPrecision->120]][[1]] (* Harvey P. Dale, Aug 09 2023 *)
PROG
(PARI) a3=solve(x=0.1, 10, x-3*(1-exp(-x))) \\ Use real precision in excess
(PARI) 3+lambertw(-3/exp(3)) \\ Charles R Greathouse IV, Sep 13 2022
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Aug 29 2011
STATUS
approved