login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065813
Least m such that (p^(2*m+1)-1)/(p-1) is a prime, where p = prime(n).
1
1, 1, 1, 2, 8, 2, 1, 9, 2, 2, 3, 6, 1, 2, 63, 5, 1, 3, 9, 1, 2, 2, 2, 1, 8, 1, 9, 8, 8, 11, 2, 1, 5, 81, 3, 6, 8, 3, 1, 1, 9, 8, 8, 2, 15, 288, 20, 119, 2, 5, 56, 2, 8, 3, 11, 2
OFFSET
1,4
EXAMPLE
a(5) = 8 because ithprime(5) = 11, (11^(2*m+1)-1)/10 is not a prime for m = 1..7 and (11^17-1)/10 = 50544702849929377 is a prime.
MATHEMATICA
Do[p=Prime[w]; s=DivisorSigma[1, (p^r)^2]; z=DivisorSigma[0, (p^r)^2]; If[PrimeQ[s], Print[{p, r, p^r, s, z}]], {w, 1, 100}, {r, 1, 100}] For w=12, this prints out first {37, 6, 2565726409, 6765811783780036261, 13}.
lm[n_]:=Module[{m=1}, While[!PrimeQ[(n^(2m+1)-1)/(n-1)], m++]; m]; lm/@Prime[ Range[ 56]] (* Harvey P. Dale, Feb 16 2014 *)
PROG
(PARI) { allocatemem(932245000); for (n=1, 100, x=prime(n); s=x^2; q=x - 1; m=1; while (!isprime(((x*=s) - 1)/q), m++); write("b065813.txt", n, " ", m) ) } \\ Harry J. Smith, Oct 31 2009
KEYWORD
hard,nonn
AUTHOR
Vladeta Jovovic and Labos Elemer, Nov 13 2001
STATUS
approved