login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194552
Sum of all parts > 1 of all partitions of n.
4
0, 2, 5, 13, 23, 47, 75, 131, 203, 323, 477, 729, 1041, 1517, 2132, 3012, 4134, 5718, 7713, 10453, 13918, 18538, 24357, 32037, 41612, 54040, 69538, 89362, 113925, 145095, 183473, 231697, 290899, 364577, 454632, 566016, 701436, 867800, 1069430, 1315550, 1612595
OFFSET
1,2
COMMENTS
Also the total number of missing parts in the partitions of n. A missing part of a partition of n is any number from 1 to n not occurring as a part. For example for n = 3, 1,2 are missing from 3; 3 is missing from 2+1, and 2,3 are missing from 1+1+1, for a total of a(3) = 5. - George Beck, Oct 23 2014
LINKS
FORMULA
a(n) = A066186(n) - A000070(n-1).
a(n) = n * A000041(n) - A000070(n-1). - George Beck, Oct 24 2014
G.f.: (x/(1 - x)) * (d/dx) Product_{k>=2} 1/(1 - x^k). - Ilya Gutkovskiy, Mar 06 2021
MAPLE
b:= proc(n, i) option remember; local h, t;
if n<0 or i<1 then [0, 0]
elif n=0 or i=1 then [1, 0]
else h:= b(n, i-1); t:= b(n-i, i);
[h[1]+t[1], h[2]+t[2] +t[1]*i]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..50); # Alois P. Heinz, Dec 14 2011
MATHEMATICA
a[n_] := n PartitionsP[n] -Total@Table[PartitionsP[k], {k, 0, n - 1}]; a /@ Range[40] (* George Beck, Oct 23 2014 *)
CROSSREFS
Partial sums of A138880.
Sequence in context: A281906 A256491 A106009 * A079780 A178621 A362105
KEYWORD
nonn
AUTHOR
Omar E. Pol, Dec 11 2011
STATUS
approved