OFFSET
1,2
COMMENTS
Also the total number of missing parts in the partitions of n. A missing part of a partition of n is any number from 1 to n not occurring as a part. For example for n = 3, 1,2 are missing from 3; 3 is missing from 2+1, and 2,3 are missing from 1+1+1, for a total of a(3) = 5. - George Beck, Oct 23 2014
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
FORMULA
G.f.: (x/(1 - x)) * (d/dx) Product_{k>=2} 1/(1 - x^k). - Ilya Gutkovskiy, Mar 06 2021
MAPLE
b:= proc(n, i) option remember; local h, t;
if n<0 or i<1 then [0, 0]
elif n=0 or i=1 then [1, 0]
else h:= b(n, i-1); t:= b(n-i, i);
[h[1]+t[1], h[2]+t[2] +t[1]*i]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..50); # Alois P. Heinz, Dec 14 2011
MATHEMATICA
a[n_] := n PartitionsP[n] -Total@Table[PartitionsP[k], {k, 0, n - 1}]; a /@ Range[40] (* George Beck, Oct 23 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Dec 11 2011
STATUS
approved