This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194549 Triangle read by rows: T(n,k) = Dyson's rank of the k-th partition of n that does not contain 1 as a part, with partitions in lexicographic order. 7
 1, 1, 2, 0, 3, 1, 4, -1, 2, 1, 5, 0, 3, 2, 6, -2, 1, 0, 4, 3, 2, 7, -1, 2, 1, 5, 0, 4, 3, 8, -3, 0, -1, 3, 2, 1, 6, 1, 5, 4, 3, 9, -2, 1, 0, 4, -1, 3, 2, 7, 2, 1, 6, 5, 4, 10, -4, -1, -2, 2, 1, 0, 5, 0, 4, 3, 2, 8, -1, 3, 2, 7, 1, 6, 5, 4, 11, -3, 0, -1, 3, -2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Alois P. Heinz, Rows n = 1..33, flattened FORMULA a(n) = A141285(n) - A194548(n). EXAMPLE Written as a triangle: 1; 1; 2; 0,3; 1,4; -1,2,1,5; 0,3,2,6; -2,1,0,4,3,2,7; -1,2,1,5,0,4,3,8; -3,0,-1,3,2,1,6,1,5,4,3,9; -2,1,0,4,-1,3,2,7,2,1,6,5,4,10; -4,-1,-2,2,1,0,5,0,4,3,2,8,-1,3,2,7,1,6,5,4,11; MAPLE T:= proc(n) local b, l;       b:= proc(n, i, t)             if n=0 then l:=l, i-t           elif i>n then           else b(n-i, i, t+1); b(n, i+1, t)             fi           end;       if n<2 then 1 else l:= NULL; b(n, 2, 0); l fi     end: seq(T(n), n=1..13); # Alois P. Heinz, Dec 20 2011 CROSSREFS The sum of row n is A000041(n-1). Row n has length A187219(n). Cf. A002865, A135010, A138121, A194546, A194547, A194548. Sequence in context: A135156 A277707 A316524 * A063277 A029178 A082375 Adjacent sequences:  A194546 A194547 A194548 * A194550 A194551 A194552 KEYWORD sign,tabf,look AUTHOR Omar E. Pol, Dec 11 2011 EXTENSIONS More terms from Alois P. Heinz, Dec 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 21:07 EDT 2019. Contains 328227 sequences. (Running on oeis4.)