login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194549
Triangle read by rows: T(n,k) = Dyson's rank of the k-th partition of n that does not contain 1 as a part, with partitions in lexicographic order.
9
1, 1, 2, 0, 3, 1, 4, -1, 2, 1, 5, 0, 3, 2, 6, -2, 1, 0, 4, 3, 2, 7, -1, 2, 1, 5, 0, 4, 3, 8, -3, 0, -1, 3, 2, 1, 6, 1, 5, 4, 3, 9, -2, 1, 0, 4, -1, 3, 2, 7, 2, 1, 6, 5, 4, 10, -4, -1, -2, 2, 1, 0, 5, 0, 4, 3, 2, 8, -1, 3, 2, 7, 1, 6, 5, 4, 11, -3, 0, -1, 3, -2
OFFSET
1,3
LINKS
FORMULA
a(n) = A141285(n) - A194548(n).
EXAMPLE
Written as a triangle:
1;
1;
2;
0,3;
1,4;
-1,2,1,5;
0,3,2,6;
-2,1,0,4,3,2,7;
-1,2,1,5,0,4,3,8;
-3,0,-1,3,2,1,6,1,5,4,3,9;
-2,1,0,4,-1,3,2,7,2,1,6,5,4,10;
-4,-1,-2,2,1,0,5,0,4,3,2,8,-1,3,2,7,1,6,5,4,11;
MAPLE
T:= proc(n) local b, l;
b:= proc(n, i, t)
if n=0 then l:=l, i-t
elif i>n then
else b(n-i, i, t+1); b(n, i+1, t)
fi
end;
if n<2 then 1 else l:= NULL; b(n, 2, 0); l fi
end:
seq(T(n), n=1..13); # Alois P. Heinz, Dec 20 2011
MATHEMATICA
T[n_] := Module[{b, l}, b[n0_, i_, t_] :=
If[n0 == 0, l = Append[l, i-t],
If[i>n0, , b[n0-i, i, t+1]; b[n0, i+1, t]]];
If[n<2, {1}, l = {}; b[n, 2, 0]; l]];
Table[T[n], {n, 1, 13}] // Flatten (* Jean-François Alcover, Mar 05 2021, after Alois P. Heinz *)
CROSSREFS
The sum of row n is A000041(n-1). Row n has length A187219(n).
Sequence in context: A344616 A316524 A357630 * A063277 A029178 A082375
KEYWORD
sign,tabf,look
AUTHOR
Omar E. Pol, Dec 11 2011
EXTENSIONS
More terms from Alois P. Heinz, Dec 20 2011
STATUS
approved