This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194555 Decimal expansion of the real part of i^(e^Pi), where i = sqrt(-1). 4
 2, 1, 9, 2, 0, 4, 8, 9, 4, 9, 0, 0, 8, 7, 6, 1, 3, 2, 8, 9, 0, 7, 6, 7, 9, 4, 9, 7, 4, 4, 6, 5, 7, 2, 6, 5, 8, 7, 3, 6, 9, 2, 6, 4, 6, 1, 1, 9, 0, 7, 9, 6, 3, 9, 2, 6, 4, 8, 5, 0, 9, 2, 1, 7, 3, 8, 9, 3, 1, 7, 0, 7, 6, 5, 2, 1, 9, 9, 7, 4, 7, 2, 2, 3, 5, 3, 0, 1, 9, 5, 4, 0, 6, 1, 5, 3, 4, 6, 1, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS If Schanuel's Conjecture is true, then i^e^Pi is transcendental (see Marques and Sondow 2010, p. 79). LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 S. Finch, Errata and Addenda to Mathematical Constants, Jun 23 2012, Section 1.1 Steven R. Finch, Errata and Addenda to Mathematical Constants, January 22, 2016. [Cached copy, with permission of the author] D. Marques and J. Sondow, Schanuel's conjecture and algebraic powers z^w and w^z with z and w transcendental, arXiv:1010.6216 [math.NT], 2010-2011; East-West J. Math., 12 (2010), 75-84. Wikipedia, Schanuel's conjecture EXAMPLE i^e^Pi = 0.2192048949... - 0.9756788478...*i MATHEMATICA RealDigits[ Re[I^E^Pi], 10, 100] // First PROG (PARI) real(I^(exp(Pi))) \\ Michel Marcus, Aug 19 2018 CROSSREFS Cf. A039661 (e^Pi), A194554 (imaginary part). Cf. A194348 (sqrt(2)^(sqrt(2)^sqrt(2))). Sequence in context: A128751 A129168 A293416 * A024578 A030327 A095890 Adjacent sequences:  A194552 A194553 A194554 * A194556 A194557 A194558 KEYWORD nonn,cons AUTHOR Jonathan Sondow, Aug 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 14:45 EDT 2019. Contains 328019 sequences. (Running on oeis4.)