login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194348 Decimal expansion of sqrt(2)^sqrt(2)^sqrt(2). 3
1, 7, 6, 0, 8, 3, 9, 5, 5, 5, 8, 8, 0, 0, 2, 8, 0, 9, 0, 7, 5, 6, 6, 4, 9, 8, 9, 5, 6, 3, 8, 3, 7, 2, 7, 4, 8, 0, 7, 9, 8, 0, 4, 0, 9, 4, 3, 1, 8, 5, 0, 9, 9, 0, 4, 6, 4, 6, 3, 8, 8, 2, 2, 5, 0, 5, 3, 4, 2, 8, 4, 1, 6, 8, 7, 5, 4, 5, 4, 6, 5, 8, 1, 1, 9, 0, 4, 6, 3, 5, 1, 1, 5, 2, 6, 3, 0, 5, 9, 8, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If Schanuel's Conjecture is true, then sqrt(2)^sqrt(2)^sqrt(2) is transcendental (see Marques and Sondow 2010, p. 79).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

S. Finch, Errata and Addenda to Mathematical Constants, Jun 23 2012, Section 1.1

D. Marques and J. Sondow, Schanuel's conjecture and algebraic powers z^w and w^z with z and w transcendental, arXiv:1010.6216 [math.NT], 2010-2011; East-West J. Math., 12 (2010), 75-84.

Wikipedia, Schanuel's conjecture

EXAMPLE

1.76083955588002809075664989563837274807980409431850990464638822505342...

MATHEMATICA

RealDigits[ Sqrt[2]^Sqrt[2]^Sqrt[2], 10, 100] // First

PROG

(PARI) sqrt(2)^sqrt(2)^sqrt(2) \\ Charles R Greathouse IV, May 14 2014

(PARI) (x->x^x^x)(sqrt(2)) \\ Charles R Greathouse IV, May 14 2014

(MAGMA) SetDefaultRealField(RealField(100)); Sqrt(2)^Sqrt(2)^Sqrt(2); // G. C. Greubel, Aug 19 2018

CROSSREFS

Cf. A002193 (decimal expansion of sqrt(2)), A078333 (decimal expansion of sqrt(2)^sqrt(2)), A194555 (the decimal expansion of the real part of I^e^Pi).

Sequence in context: A021572 A321079 A111764 * A094123 A132799 A154580

Adjacent sequences:  A194345 A194346 A194347 * A194349 A194350 A194351

KEYWORD

nonn,cons

AUTHOR

Jonathan Sondow, Aug 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 01:03 EST 2020. Contains 332086 sequences. (Running on oeis4.)