login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194349
E.g.f.: -log( sqrt(1-x^2) - x ).
1
1, 2, 5, 24, 129, 960, 7965, 80640, 903105, 11612160, 163451925, 2554675200, 43259364225, 797058662400, 15764670046125, 334764638208000, 7571150452490625, 182111963185152000, 4634731528895593125, 124564582818643968000
OFFSET
1,2
COMMENTS
Compare e.g.f. to arccosh(x) = log(sqrt(x^2-1) + x).
FORMULA
a(2*n) = 2^n*(2*n-1)! for n>=1.
a(n) = A100097(n+1)*(n-1)!/2^n for n>=1.
a(n) = (n-1)!/2^n * Sum_{k=0..floor((n+1)/2)} C(n+1,k)*A000129(n+1-2*k) for n >= 1. [From a formula of Paul Barry in A100097]
E.g.f.: log( (sqrt(1-x^2) + x)/(1-2*x^2) ).
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 5*x^3/3! + 24*x^4/4! + 129*x^5/5! + ...
where
exp(A(x)) = 1 + 2*(x/2) + 6*(x/2)^2 + 16*(x/2)^3 + 46*(x/2)^4 + 128*(x/2)^5 + ... + A098617(n)*(x/2)^n + ...
MATHEMATICA
With[{nn=30}, Rest[CoefficientList[Series[-Log[Sqrt[1-x^2]-x], {x, 0, nn}], x] Range[0, nn]!]] (* Harvey P. Dale, Dec 01 2011 *)
PROG
(PARI) {a(n)=n!*polcoeff(-log(sqrt(1-x^2+x*O(x^n))-x), n)}
(PARI) {A000129(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
{a(n)=if(n<1, 0, sum(k=0, floor((n+1)/2), binomial(n+1, k)*A000129(n+1-2*k))*(n-1)!/2^n)}
CROSSREFS
Sequence in context: A185056 A346204 A330512 * A208969 A020022 A026073
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 21 2011
STATUS
approved