

A078333


Decimal expansion of sqrt(2)^sqrt(2).


8



1, 6, 3, 2, 5, 2, 6, 9, 1, 9, 4, 3, 8, 1, 5, 2, 8, 4, 4, 7, 7, 3, 4, 9, 5, 3, 8, 1, 0, 2, 4, 7, 1, 9, 6, 0, 2, 0, 7, 9, 1, 0, 8, 8, 5, 7, 0, 5, 3, 1, 1, 4, 1, 1, 7, 2, 4, 7, 7, 8, 0, 6, 8, 4, 3, 8, 3, 0, 3, 5, 2, 0, 5, 9, 9, 8, 6, 1, 6, 6, 4, 2, 2, 4, 7, 8, 5, 5, 5, 0, 7, 5, 0, 6, 6, 2, 6, 0, 4, 1, 4, 2, 3, 0, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

This number was used in a nonconstructive proof that an irrational number raised to an irrational power may be a rational number: "sqrt(2)^sqrt(2) is either rational or irrational. If it is rational, our statement is proved. If it is irrational, (sqrt(2)^sqrt(2))^sqrt(2) = 2 proves our statement." (Jarden, 1953).  Amiram Eldar, Aug 14 2020


REFERENCES

Paul R. Halmos, Problems for mathematicians, young and old, The Mathematical Association of America, 1991. Problem 3 B, pp. 22 and 171.
Dov Jarden, Curiosa No. 339: A simple proof that a power of an irrational number to an irrational exponent may be rational, Scripta Mathematica, Vol. 19 (1953), p. 229.


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000
J. Roger Hindley, The Root2 Proof as an Example of Nonconstructivity, 2015.
J. P. Jones and S. Toporowski, Irrational numbers, American Mathematical Monthly, Vol. 80, No. 4 (1973), pp. 423424.
Robert Munafo, Notable Properties of Specific Numbers (entry for the number 1.632526919438)
Wikipedia, Square root of the GelfondSchneider constant


EXAMPLE

sqrt(2)^sqrt(2) = 1.632526919438152844773495381...


MATHEMATICA

RealDigits[Sqrt[2]^Sqrt[2], 10, 111][[1]]


PROG

(PARI) 2^.5^.5 \\ Charles R Greathouse IV, Mar 22 2013


CROSSREFS

Cf. A002193.
Square root of A007507.  Michel Marcus, Oct 21 2017
Sequence in context: A153607 A010494 A333239 * A302852 A049605 A088395
Adjacent sequences: A078330 A078331 A078332 * A078334 A078335 A078336


KEYWORD

nonn,cons


AUTHOR

Robert G. Wilson v, Nov 21 2002


EXTENSIONS

Munafo link clarified by Robert Munafo, Jan 25 2010


STATUS

approved



