login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360733
Expansion of Sum_{k>0} (x * (1 + (k * x)^k))^k.
2
1, 2, 1, 9, 1, 98, 1, 1025, 2188, 15626, 1, 692836, 1, 5764802, 97656251, 201326593, 1, 36138519442, 1, 409470748547, 14242684529830, 3138428376722, 1, 10019491686645761, 476837158203126, 3937376385699290, 5403406870691968357, 19704673338472752470, 1
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} d^(n-d) * binomial(d,n/d-1).
If p is an odd prime, a(p) = 1.
MATHEMATICA
a[n_] := DivisorSum[n, #^(n-#) * Binomial[#, n/# - 1] &]; Array[a, 30] (* Amiram Eldar, Aug 09 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, (x*(1+(k*x)^k))^k))
(PARI) a(n) = sumdiv(n, d, d^(n-d)*binomial(d, n/d-1));
CROSSREFS
Sequence in context: A133399 A128751 A129168 * A353204 A293416 A194555
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 18 2023
STATUS
approved