login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360732
Expansion of Sum_{k>0} (k * x * (1 + (k * x)^k))^k.
4
1, 5, 27, 288, 3125, 48907, 823543, 17039360, 387479538, 10048828125, 285311670611, 8929262337009, 302875106592253, 11116754387067959, 437894195556640625, 18448995890703106048, 827240261886336764177, 39347760450413560593753
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} d^n * binomial(d,n/d-1).
If p is an odd prime, a(p) = p^p.
MATHEMATICA
a[n_] := DivisorSum[n, #^n * Binomial[#, n/# - 1] &]; Array[a, 20] (* Amiram Eldar, Aug 09 2023 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x*(1+(k*x)^k))^k))
(PARI) a(n) = sumdiv(n, d, d^n*binomial(d, n/d-1));
CROSSREFS
Sequence in context: A360712 A300621 A265907 * A135627 A244655 A002401
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 18 2023
STATUS
approved