login
A194377
Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - <k*r>) > 0, where r=sqrt(6) and < > denotes fractional part.
3
1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 45, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 83, 85, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
OFFSET
1,2
COMMENTS
See A194368. Although a(n)=A007957(n) for n = 1..70, the number 208, for example, is here but not A007957.
MATHEMATICA
r = Sqrt[6]; c = 1/2;
x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 500}];
Flatten[Position[t1, 1]] (* empty *)
t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 400}];
Flatten[Position[t2, 1]] (* A194376 *)
t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}];
Flatten[Position[t3, 1]] (* A194377 *)
PROG
(PARI) is(n)=my(r=sqrt(6), f=x->x-x\1); sum(k=1, n, f(1/2+k*r)-f(k*r))>0 \\ Charles R Greathouse IV, Jul 25 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 23 2011
STATUS
approved