The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194377 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) > 0, where r=sqrt(6) and < > denotes fractional part. 3
 1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 45, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 83, 85, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A194368. Although a(n)=A007957(n) for n = 1..70, the number 208, for example, is here but not A007957. LINKS MATHEMATICA r = Sqrt[6]; c = 1/2; x[n_] := Sum[FractionalPart[k*r], {k, 1, n}] y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}] t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 500}]; Flatten[Position[t1, 1]]   (* empty *) t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 400}]; Flatten[Position[t2, 1]]   (* A194376 *) t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}]; Flatten[Position[t3, 1]]   (* A194377 *) PROG (PARI) is(n)=my(r=sqrt(6), f=x->x-x\1); sum(k=1, n, f(1/2+k*r)-f(k*r))>0 \\ Charles R Greathouse IV, Jul 25 2012 CROSSREFS Cf. A007957, A194368, A194376. Sequence in context: A249494 A047747 A007957 * A258432 A128938 A215138 Adjacent sequences:  A194374 A194375 A194376 * A194378 A194379 A194380 KEYWORD nonn AUTHOR Clark Kimberling, Aug 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 13:49 EDT 2021. Contains 343857 sequences. (Running on oeis4.)