login
A194378
Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - <k*r>) < 0, where r=sqrt(7) and < > denotes fractional part.
4
1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 35, 37, 38, 39, 40, 41, 43, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 83, 85, 86, 87, 88, 89, 91, 97, 99, 100
OFFSET
1,2
COMMENTS
See A194368.
MATHEMATICA
r = Sqrt[7]; c = 1/2;
x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 100}];
Flatten[Position[t1, 1]] (* A194378 *)
t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 300}];
Flatten[Position[t2, 1]] (* A194379 *)
t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 800}];
Flatten[Position[t3, 1]] (* A194380 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 23 2011
STATUS
approved