login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194375
Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - <k*r>) > 0, where r=sqrt(5) and < > denotes fractional part.
3
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74
OFFSET
1,2
COMMENTS
See A194368.
MATHEMATICA
r = Sqrt[5]; c = 1/2;
x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 500}];
Flatten[Position[t1, 1]] (* empty *)
t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 400}];
Flatten[Position[t2, 1]] (* A194374 *)
t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}];
Flatten[Position[t3, 1]] (* A194375 *)
CROSSREFS
Sequence in context: A098572 A001955 A184480 * A188222 A329990 A109237
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 23 2011
STATUS
approved