login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193963 Triangular array: the self-fusion of (p(n,x)), where p(n,x)=sum{((k+1)^2)*x^k : 0<=k<=n}. 2
1, 4, 1, 9, 20, 5, 16, 45, 56, 14, 25, 80, 126, 120, 30, 36, 125, 224, 270, 220, 55, 49, 180, 350, 480, 495, 364, 91, 64, 245, 504, 750, 880, 819, 560, 140, 81, 320, 686, 1080, 1375, 1456, 1260, 816, 204, 100, 405, 896, 1470, 1980, 2275, 2240, 1836, 1140 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
LINKS
EXAMPLE
First six rows:
1
4....1
9....20....5
16...45....56....14
25...80....126...120...30
36...125...224...270...220...55
MATHEMATICA
z = 12;
p[n_, x_] := Sum[((k + 1)^2)*x^k, {k, 0, n}]
q[n_, x_] := p[n, x]
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193963 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193964 *)
CROSSREFS
Sequence in context: A143763 A278350 A128626 * A028941 A364109 A348180
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 10 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 13 12:36 EDT 2024. Contains 374284 sequences. (Running on oeis4.)