The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193963 Triangular array: the self-fusion of (p(n,x)), where p(n,x)=sum{((k+1)^2)*x^k : 0<=k<=n}. 2
 1, 4, 1, 9, 20, 5, 16, 45, 56, 14, 25, 80, 126, 120, 30, 36, 125, 224, 270, 220, 55, 49, 180, 350, 480, 495, 364, 91, 64, 245, 504, 750, 880, 819, 560, 140, 81, 320, 686, 1080, 1375, 1456, 1260, 816, 204, 100, 405, 896, 1470, 1980, 2275, 2240, 1836, 1140 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. LINKS Table of n, a(n) for n=0..53. EXAMPLE First six rows: 1 4....1 9....20....5 16...45....56....14 25...80....126...120...30 36...125...224...270...220...55 MATHEMATICA z = 12; p[n_, x_] := Sum[((k + 1)^2)*x^k, {k, 0, n}] q[n_, x_] := p[n, x] t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193963 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193964 *) CROSSREFS Cf. A193722, A193964. Sequence in context: A143763 A278350 A128626 * A028941 A364109 A348180 Adjacent sequences: A193960 A193961 A193962 * A193964 A193965 A193966 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Aug 10 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 13 12:36 EDT 2024. Contains 374284 sequences. (Running on oeis4.)