login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193965
Triangular array: the self-fusion of (p(n,x)), where p(n,x)=sum{L(k+1)*x^(n-k) : 0<=k<=n}, where L=A000032 (Lucas numbers).
2
1, 1, 3, 3, 10, 15, 4, 15, 26, 43, 7, 25, 43, 75, 120, 11, 40, 69, 120, 196, 318, 18, 65, 112, 195, 318, 520, 840, 29, 105, 181, 315, 514, 840, 1361, 2203, 47, 170, 293, 510, 832, 1360, 2203, 3570, 5775, 76, 275, 474, 825, 1346, 2200, 3564, 5775, 9346
OFFSET
0,3
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
EXAMPLE
First six rows:
1
1...3
3...10...15
4...15...26...43
7...25...43...75...120
11..40...69...120..196..318
MATHEMATICA
z = 12;
p[n_, x_] := Sum[LucasL[k + 1]*x^(n - k), {k, 0, n}];
q[n_, x_] := p[n, x];
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193965 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193966 *)
CROSSREFS
Sequence in context: A236170 A129885 A277963 * A301279 A330288 A262923
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 10 2011
STATUS
approved