The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193965 Triangular array: the self-fusion of (p(n,x)), where p(n,x)=sum{L(k+1)*x^(n-k) : 0<=k<=n}, where L=A000032 (Lucas numbers). 2
 1, 1, 3, 3, 10, 15, 4, 15, 26, 43, 7, 25, 43, 75, 120, 11, 40, 69, 120, 196, 318, 18, 65, 112, 195, 318, 520, 840, 29, 105, 181, 315, 514, 840, 1361, 2203, 47, 170, 293, 510, 832, 1360, 2203, 3570, 5775, 76, 275, 474, 825, 1346, 2200, 3564, 5775, 9346 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. LINKS Table of n, a(n) for n=0..53. EXAMPLE First six rows: 1 1...3 3...10...15 4...15...26...43 7...25...43...75...120 11..40...69...120..196..318 MATHEMATICA z = 12; p[n_, x_] := Sum[LucasL[k + 1]*x^(n - k), {k, 0, n}]; q[n_, x_] := p[n, x]; t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193965 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193966 *) CROSSREFS Cf. A193722, A193966. Sequence in context: A236170 A129885 A277963 * A301279 A330288 A262923 Adjacent sequences: A193962 A193963 A193964 * A193966 A193967 A193968 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Aug 10 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 02:27 EDT 2024. Contains 374388 sequences. (Running on oeis4.)