login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193961
Triangular array: the self-fusion of (p(n,x)), where p(n,x)=sum{((k+1)^2)*x^(n-k) : 0<=k<=n}.
2
1, 1, 4, 4, 17, 40, 9, 40, 98, 184, 16, 73, 184, 354, 584, 25, 116, 298, 584, 979, 1484, 36, 169, 440, 874, 1484, 2275, 3248, 49, 232, 610, 1224, 2099, 3248, 4676, 6384, 64, 305, 808, 1634, 2824, 4403, 6384, 8772, 11568, 81, 388, 1034, 2104, 3659
OFFSET
0,3
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
EXAMPLE
First six rows:
1
1....4
4....17....40
9....40....98....184
16...73....184...354...584
25...116...298...584...979...1484
MATHEMATICA
z = 12;
p[n_, x_] := Sum[((k + 1)^2)*x^(n - k), {k, 0, n}]
q[n_, x_] := p[n, x]
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193961 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193962 *)
CROSSREFS
Sequence in context: A117787 A113727 A214141 * A368197 A205110 A116561
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 10 2011
STATUS
approved