login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193590
Augmentation of the Euler triangle A008292. See Comments.
1
1, 1, 1, 1, 5, 2, 1, 16, 33, 8, 1, 42, 275, 342, 58, 1, 99, 1669, 6441, 5600, 718, 1, 219, 8503, 82149, 217694, 143126, 14528, 1, 466, 39076, 843268, 5466197, 10792622, 5628738, 466220, 1, 968, 168786, 7621160, 107506633, 509354984, 788338180
OFFSET
0,5
COMMENTS
For an introduction to the unary operation "augmentation" as applied to triangular arrays or sequences of polynomials, see A193091.
Regarding A193590, (column 1)=A002662, with general term 2^n-1-n(n+1)/2.
EXAMPLE
First 5 rows of A193589:
1
1....1
1....5....2
1....16...33....8
1....42...275...342....58
MATHEMATICA
p[n_, k_] :=
Sum[((-1)^j)*((k + 1 - j)^(n + 1))*Binomial[n + 2, j], {j, 0, k + 1}]
(* A008292, Euler triangle *)
Table[p[n, k], {n, 0, 5}, {k, 0, n}]
m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
TableForm[m[4]]
w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
v[n_] := v[n - 1].m[n]
TableForm[Table[v[n], {n, 0, 6}]] (* A193590 *)
Flatten[Table[v[n], {n, 0, 8}]]
CROSSREFS
Sequence in context: A336244 A083801 A344557 * A300051 A281890 A342381
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jul 31 2011
STATUS
approved