login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193591
Augmentation of the Euler partition triangle A026820. See Comments.
1
1, 1, 2, 1, 4, 7, 1, 7, 19, 31, 1, 10, 45, 103, 161, 1, 14, 82, 297, 617, 937, 1, 18, 146, 652, 2057, 4005, 5953, 1, 23, 228, 1395, 5251, 15004, 27836, 40668, 1, 28, 355, 2555, 13023, 43470, 115110, 205516, 295922, 1, 34, 509, 4689, 27327, 122006, 371942
OFFSET
0,3
COMMENTS
For an introduction to the unary operation "augmentation" as applied to triangular arrays or sequences of polynomials, see A193091.
EXAMPLE
First 5 rows:
1
1...2
1...4...7
1...7...19...31
1...10..45...103...161
MATHEMATICA
p[n_, k_] := Length@IntegerPartitions[n + 1,
k + 1] (* A026820, Euler partition triangle *)
Table[p[n, k], {n, 0, 5}, {k, 0, n}]
m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
TableForm[m[4]]
w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
v[n_] := v[n - 1].m[n]
TableForm[Table[v[n], {n, 0, 12}]] (* A193591 *)
Flatten[Table[v[n], {n, 0, 9}]]
CROSSREFS
Cf. A014616 (column 1), A026820, A193091.
Sequence in context: A193589 A187115 A121722 * A218842 A219421 A297314
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jul 31 2011
STATUS
approved