login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193594
Number of attractors under iteration of sum of cubes of digits in base b.
2
1, 6, 9, 6, 9, 34, 11, 28, 15, 46, 22, 50, 49, 60, 86, 86, 60, 128, 22, 58, 118, 93, 64, 185, 5, 109, 102, 100, 122, 184, 51, 94, 205, 131, 173, 275, 67, 216, 131, 127, 34, 360, 114, 78, 215, 213, 393, 479, 76, 254, 634, 197, 214, 496, 348, 170, 437, 349, 290
OFFSET
2,2
COMMENTS
If b>=2 and a >= 2*b^3, then S(a,3,b)<a. For each positive integer a, there is a positive integer m such that S^m(a,3,b)<2*b^3. (Grundman/Teeple, 2001, Lemma 8 and Corollary 9.)
LINKS
H. G. Grundman, E. A. Teeple, Generalized Happy Numbers, Fibonacci Quarterly 39 (2001), nr. 5, p. 462-466.
EXAMPLE
In the decimal system all integers go to (1); (153); (370); (371); (407) or (55, 250,133); (136, 244); (160, 217, 352); (919, 1459) under the iteration of sum of cubes of digits, hence there are five fixed points, two 2-cycles and two 3-cycles. Therefore a(10) = 5 + 2*2 + 2*3 = 15.
MAPLE
S:=proc(n, p, b) local Q, k, N, z; Q:=[convert(n, base, b)]; for k from 1 do N:=Q[k]; z:=convert(sum(N['i']^p, 'i'=1..nops(N)), base, b); if not member(z, Q) then Q:=[op(Q), z]; else Q:=[op(Q), z]; break; fi; od; return Q; end:
NumberOfAttractors:=proc(b) local A, i, Q; A:=[]: for i from 1 to 2*b^3 do Q:=S(i, 3, b); A:=[op(A), Q[nops(Q)]]; od: return(nops({op(A)})); end:
seq(NumberOfAttractors(b), b=2..20);
CROSSREFS
Cf. A193586.
Sequence in context: A118947 A023410 A010725 * A011480 A283743 A339764
KEYWORD
nonn,base,changed
AUTHOR
Martin Renner, Jul 31 2011
STATUS
approved