%I #6 Mar 30 2012 18:57:38
%S 1,1,1,1,5,2,1,16,33,8,1,42,275,342,58,1,99,1669,6441,5600,718,1,219,
%T 8503,82149,217694,143126,14528,1,466,39076,843268,5466197,10792622,
%U 5628738,466220,1,968,168786,7621160,107506633,509354984,788338180
%N Augmentation of the Euler triangle A008292. See Comments.
%C For an introduction to the unary operation "augmentation" as applied to triangular arrays or sequences of polynomials, see A193091.
%C Regarding A193590, (column 1)=A002662, with general term 2^n-1-n(n+1)/2.
%e First 5 rows of A193589:
%e 1
%e 1....1
%e 1....5....2
%e 1....16...33....8
%e 1....42...275...342....58
%t p[n_, k_] :=
%t Sum[((-1)^j)*((k + 1 - j)^(n + 1))*Binomial[n + 2, j], {j, 0, k + 1}]
%t (* A008292, Euler triangle *)
%t Table[p[n, k], {n, 0, 5}, {k, 0, n}]
%t m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
%t TableForm[m[4]]
%t w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
%t v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
%t v[n_] := v[n - 1].m[n]
%t TableForm[Table[v[n], {n, 0, 6}]] (* A193590 *)
%t Flatten[Table[v[n], {n, 0, 8}]]
%Y Cf. A008292, A193091.
%K nonn,tabl
%O 0,5
%A _Clark Kimberling_, Jul 31 2011