login
A193587
Numbers k such that the quartic elliptic curve y^2 = 5x^4 - 4k has integer solutions.
0
1, 4, 11, 16, 19, 20, 25, 29, 31, 45, 59, 64, 71, 79, 81, 89, 95, 99, 101, 124, 131, 139, 151, 169, 176, 179, 181, 191, 199, 211, 220, 229, 239, 245, 251, 256, 271, 275, 284, 295, 304, 311, 316, 319, 320, 324, 349, 359, 361, 369, 379, 395, 400, 401, 439, 451
OFFSET
1,2
COMMENTS
For these numbers k there exists an integer m such that the quintic trinomial x^5+k*x+m factors as a cubic times a quadratic.
Positive numbers of the form -d^4 + 3 d^2 e - e^2.
FORMULA
Complement to A193533.
MATHEMATICA
aa = {}; Do[Do[k = -d^4 + 3 d^2 e - e^2; If[k > 0, AppendTo[aa, k ]], {d, -100, 100}], {e, -100, 100}]; Take[Union[aa], 100]
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jul 31 2011
STATUS
approved