OFFSET
2,23
COMMENTS
On page 153 of Grünbaum and Shephard (1980) is Table 3 which is a list of all the (n,s)-satins with n<=100. - Michael Somos, Dec 05 2014
REFERENCES
B. Grünbaum and G. C. Shephard, The geometry of fabrics, pp. 77-98 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.
LINKS
B. Grünbaum and G. C. Shephard, Satins and twills: an introduction to the geometry of fabrics, Math. Mag., 53 (1980), 139-161. See Theorem 5, page 152.
FORMULA
a(n) = A086669(n) - 1. - Andrey Zabolotskiy, Dec 25 2018
MAPLE
U:=proc(n) local j, p3, i, t1, t2, al, even;
t1:=ifactors(n)[2];
t2:=nops(t1);
if (n mod 2) = 0 then even:=1; al:=t1[1][2]; else even:=0; al:=0; fi;
j:=t2-even;
p3:=0;
for i from 1 to t2 do if t1[i][1] mod 4 = 3 then p3:=1; fi; od:
if (al >= 2) or (p3=1) then RETURN(0) else RETURN(2^(j-1)); fi;
end;
#A193139:
V:=proc(n) local j, i, t1, t2, al, even;
t1:=ifactors(n)[2];
t2:=nops(t1);
if (n mod 2) = 0 then even:=1; al:=t1[1][2]; else even:=0; al:=0; fi;
j:=t2-even;
if (al <= 1) then RETURN(2^(j-1)-1); fi;
if (al = 2) then RETURN(2^j-1); fi;
if (al >= 3) then RETURN(2^(j+1)-1); fi;
end;
#A193140:
[seq(U(n)+V(n), n=3..120)];
MATHEMATICA
a[n_] := 2^With[{f = FactorInteger[n]}, Length@f - If[
f[[1, 1]] == 2 && f[[1, 2]] > 1,
Boole[f[[1, 2]] == 2],
Boole[f[[1, 1]] == 2] + Boole[AnyTrue[f[[;; , 1]], Mod[#, 4] == 3 &]]
]] - 1;
Table[a[n], {n, 2, 100}]
(* Andrey Zabolotskiy, Mar 21 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 16 2011
EXTENSIONS
a(2) = 0 prepended and name edited by Andrey Zabolotskiy, Mar 21 2021
STATUS
approved