login
A193139
Number of symmetric satins of order n.
2
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 3, 0, 1, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 0, 1, 3, 1, 0, 0, 3, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 3, 0, 0, 1, 1, 1, 1, 0, 3, 0, 0, 0, 3, 1, 0, 1, 3, 0, 1, 1, 1, 1, 0, 1, 3, 0, 0, 1, 1, 0, 1, 0, 3, 3, 0, 0, 1, 0, 1, 1, 3, 0, 1, 1, 1, 1, 0, 1, 7
OFFSET
3,22
LINKS
B. Grünbaum and G. C. Shephard, Satins and twills: an introduction to the geometry of fabrics, Math. Mag., 53 (1980), 139-161. See Theorem 5.
FORMULA
a(n) = A157230(n) - 1. - Andrey Zabolotskiy, Dec 25 2018
MAPLE
V:=proc(n) local j, i, t1, t2, al, even;
t1:=ifactors(n)[2];
t2:=nops(t1);
if (n mod 2) = 0 then even:=1; al:=t1[1][2]; else even:=0; al:=0; fi;
j:=t2-even;
if (al <= 1) then RETURN(2^(j-1)-1); fi;
if (al = 2) then RETURN(2^j-1); fi;
if (al >= 3) then RETURN(2^(j+1)-1); fi;
end;
[seq(V(n), n=3..120)];
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 16 2011
STATUS
approved