OFFSET
0,1
COMMENTS
See A192872.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
FORMULA
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n) = Fibonacci(n-1)*Fibonacci(n+4). - Gary Detlefs, Oct 19 2011
G.f.: (3 -6*x +2*x^2)/((1+x)*(1-3*x+x^2)). - R. J. Mathar, May 08 2014
a(n) + a(n+1) = A001906(n+1). - R. J. Mathar, May 08 2014
a(n) = (2^(-n)*(11*(-2)^n-(3-sqrt(5))^n*(-2+sqrt(5))+(2+sqrt(5))*(3+sqrt(5))^n))/5. - Colin Barker, Oct 01 2016
From Amiram Eldar, Oct 06 2020: (Start)
Sum_{n>=2} 1/a(n) = (1/5) * A290565 - 17/150.
Sum_{n>=2} (-1)^n/a(n) = 1/phi - 83/150, where phi is the golden ratio (A001622). (End)
MAPLE
with(combinat):seq(fibonacci(n-1)*fibonacci(n+4), n=0..27);
MATHEMATICA
(* First program *)
q = x^2; s = x + 1; z = 28;
p[0, x_]:= 3; p[1, x_]:= 5 x;
p[n_, x_]:= p[n-1, x]*x + p[n-2, x]*x^2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192919 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192920 *)
(* Second program *)
With[{F=Fibonacci}, Table[F[n-1]*F[n+4], {n, 0, 30}]] (* G. C. Greubel, Jul 28 2019 *)
PROG
(PARI) a(n) = round((2^(-n)*(11*(-2)^n-(3-sqrt(5))^n*(-2+sqrt(5))+(2+sqrt(5))*(3+sqrt(5))^n))/5) \\ Colin Barker, Oct 01 2016
(PARI) Vec((3+2*x^2-6*x)/((1+x)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Oct 01 2016
(PARI) vector(30, n, n--; f=fibonacci; f(n-1)*f(n+4)) \\ G. C. Greubel, Jul 28 2019
(Magma) F:=Fibonacci; [F(n-1)*F(n+4): n in [0..30]]; // G. C. Greubel, Jul 28 2019
(Sage) f=fibonacci; [f(n-1)*f(n+4) for n in (0..30)] # G. C. Greubel, Jul 28 2019
(GAP) F:=Fibonacci;; List([0..30], n-> F(n-1)*F(n+4)); # G. C. Greubel, Jul 28 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 12 2011
STATUS
approved