login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192851 Integers n such that 6n, 36n, and 216n fall between pairs of twin primes, that is, 6n-1, 6n+1, 36n-1, 36n+1, 216n-1, and 216n+1 are prime. 2
2, 12, 23, 45, 325, 703, 2705, 3598, 4218, 7338, 10698, 13562, 16478, 16665, 20195, 25195, 29678, 32312, 36228, 51882, 79628, 83522, 84513, 84525, 89453, 100028, 106710, 107712, 108868, 114527, 119142, 145590, 147758, 151557, 167155, 173960, 190547, 192588 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Infinite under Dickson's conjecture. - Charles R Greathouse IV, Jul 24 2011

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

EXAMPLE

12 is in the list because 12*6=72, 12*36=432, 12*216=2592 are all between a pair of twin primes (71,73 and 431,433 and 2591,2593).

MATHEMATICA

Select[Range[1000000], PrimeQ[6 # - 1] && PrimeQ[6 # + 1] && PrimeQ[36 # - 1] && PrimeQ[36 # + 1] && PrimeQ[216 # - 1] && PrimeQ[216 # + 1] &] (* T. D. Noe, Jul 26 2011 *)

Select[Range[193000], AllTrue[{6#-1, 6#+1, 36#-1, 36#+1, 216#-1, 216#+1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 21 2020 *)

PROG

(PARI) is(n)=isprime(6*n-1) && isprime(6*n+1) && isprime(36*n-1) && isprime(36*n+1) && isprime(216*n-1) && isprime(216*n+1) \\ Charles R Greathouse IV, Sep 15 2015

CROSSREFS

Subsequence of A191626 and hence A002822.

Cf. A014574.

Sequence in context: A012664 A012545 A009514 * A112718 A117301 A141079

Adjacent sequences:  A192848 A192849 A192850 * A192852 A192853 A192854

KEYWORD

nonn

AUTHOR

Andrea Raffetti, Jul 11 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 04:06 EDT 2021. Contains 348211 sequences. (Running on oeis4.)