login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192850
Molecular topological indices of the web graphs.
1
46, 184, 414, 832, 1390, 2232, 3262, 4672, 6318, 8440, 10846, 13824, 17134, 21112, 25470, 30592, 36142, 42552, 49438, 57280, 65646, 75064, 85054, 96192, 107950, 120952, 134622, 149632, 165358, 182520
OFFSET
1,1
COMMENTS
Web graphs are defined for n>=3; extended to n=1 using closed form.
LINKS
Eric Weisstein's World of Mathematics, Molecular Topological Index
FORMULA
a(n) = n*(6*n^2+22*n+3*((-1)^n+7)).
G.f.: 2*x*(x^4+2*x^3+46*x+23)/((x-1)^4*(x+1)^2). - Colin Barker, Aug 07 2012
E.g.f.: x*((49 +40*x +6*x^2)*exp(x) - 3*exp(-x)). - G. C. Greubel, Jan 05 2018
MATHEMATICA
Table[n*(6*n^2+22*n+3*((-1)^n+7)), {n, 1, 40}] (* G. C. Greubel, Jan 05 2019 *)
PROG
(PARI) vector(40, n, n*(6*n^2+22*n+3*((-1)^n+7))) \\ G. C. Greubel, Jan 05 2019
(Magma) [n*(6*n^2+22*n+3*((-1)^n+7)): n in [1..40]]; // G. C. Greubel, Jan 05 2019
(Sage) [n*(6*n^2+22*n+3*((-1)^n+7)) for n in (1..40)] # G. C. Greubel, Jan 05 2019
(GAP) List([1..40], n -> n*(6*n^2+22*n+3*((-1)^n+7))); # G. C. Greubel, Jan 05 2019
CROSSREFS
Sequence in context: A251467 A251460 A235767 * A211334 A160334 A235550
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jul 11 2011
STATUS
approved