login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251460 Number of (n+1) X (1+1) 0..2 arrays with every 2 X 2 subblock summing to a prime and those sums nondecreasing in every row and column. 1
46, 168, 602, 1908, 5926, 17424, 50306, 141792, 392326, 1077744, 2902034, 7839120, 20718262, 55312368, 144223010, 381727440, 985187686, 2590354800, 6631981106, 17346061392, 44125124758, 114917794032, 290786392514, 754633003728 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 2*a(n-1) + 19*a(n-2) - 38*a(n-3) - 136*a(n-4) + 272*a(n-5) + 456*a(n-6) - 912*a(n-7) - 720*a(n-8) + 1440*a(n-9) + 432*a(n-10) - 864*a(n-11).

Empirical g.f.: 2*x*(23 + 38*x - 304*x^2 - 370*x^3 + 1656*x^4 + 1266*x^5 - 4716*x^6 - 1800*x^7 + 6912*x^8 + 1080*x^9 - 3888*x^10) / ((1 - 2*x)*(1 - 2*x^2)^2*(1 - 3*x^2)*(1 - 6*x^2)^2). - Colin Barker, Nov 29 2018

EXAMPLE

Some solutions for n=4:

..0..1....2..0....0..1....0..0....0..2....2..0....2..0....0..2....0..0....1..0

..1..0....2..1....0..2....0..2....0..1....1..0....0..0....1..0....1..2....2..2

..1..0....2..2....0..1....0..0....2..2....2..0....0..2....2..0....0..0....0..1

..1..1....2..1....1..1....0..2....0..1....1..2....0..1....1..0....2..1....2..2

..2..1....2..2....1..2....1..2....2..2....0..2....2..2....0..2....1..1....1..0

CROSSREFS

Column 1 of A251467.

Sequence in context: A189809 A350556 A251467 * A235767 A192850 A211334

Adjacent sequences:  A251457 A251458 A251459 * A251461 A251462 A251463

KEYWORD

nonn

AUTHOR

R. H. Hardin, Dec 02 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 23:32 EDT 2022. Contains 356150 sequences. (Running on oeis4.)