login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192422
Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.
2
0, 1, 1, 5, 7, 20, 35, 83, 161, 355, 720, 1541, 3185, 6733, 14027, 29500, 61663, 129403, 270865, 567911, 1189440, 2492905, 5222449, 10943813, 22928815, 48044900, 100665083, 210927155, 441948689, 926020171, 1940274000, 4065458669, 8518311809
OFFSET
0,4
COMMENTS
The polynomial p(n,x) is defined by ((x+d)/2)^n + ((x-d)/2)^n, where d=sqrt(x^2+4). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232.
Assuming the o.g.f. given below, this sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. It is the case P1 = 1, P2 = -1, Q = -1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. Cf. A100047. - Peter Bala, Aug 28 2019
LINKS
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
FORMULA
From Colin Barker, May 12 2014: (Start)
a(n) = a(n-1) + 3*a(n-2) - a(n-3) - a(n-4).
G.f.: x*(1 + x^2)/(1 - x - 3*x^2 + x^3 + x^4). (End)
From Vladimir Kruchinin, Mar 20 2016: (Start)
G.f.: ((1+x^2)/(1-x^2)) * F(x/(1-x^2)), where F(x) is g.f. of Fibonacci numbers (A000045).
a(n) = n*Sum_{i=0..floor((n-1)/2)} (binomial(n-i-1,i)/(n-2*i))*Fibonacci(n-2*i). (End)
a(n) = Sum_{j=0..n} T(n, j)*Fibonacci(j), where T(n, k) = [x^k] ((x + sqrt(x^2+4))^n + (x - sqrt(x^2+4))^n)/2^n. - G. C. Greubel, Jul 11 2023
EXAMPLE
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x) = 2 -> 2
p(1,x) = x -> x
p(2,x) = 2 + x^2 -> 3 + x
p(3,x) = 3*x + x^3 -> 1 + 5*x
p(4,x) = 2 + 4*x^2 + x^4 -> 8 + 7*x.
From these, read A192421 = (2, 0, 3, 1, 8, ...) and a(n) = (0, 1, 1, 5, 7, ...).
MATHEMATICA
(See A192421.)
LinearRecurrence[{1, 3, -1, -1}, {0, 1, 1, 5}, 40] (* G. C. Greubel, Jul 11 2023 *)
PROG
(Maxima)
a(n):=n*sum((binomial(n-i-1, i))/(n-2*i)*fib(n-2*i), i, 0, (n-1)/2); /* Vladimir Kruchinin, Mar 20 2016 */
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x^2)/(1-x-3*x^2+x^3+x^4) )); // G. C. Greubel, Jul 11 2023
(SageMath)
@CachedFunction
def a(n): # a = A192422
if (n<4): return (0, 1, 1, 5)[n]
else: return a(n-1) +3*a(n-2) -a(n-3) -a(n-4)
[a(n) for n in range(41)] # G. C. Greubel, Jul 11 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 30 2011
STATUS
approved